Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T08:19:16.140Z Has data issue: false hasContentIssue false

Influence of corner layers in the variational determination of bubble solutions of the constrained Allen–Cahn equation

Published online by Cambridge University Press:  01 October 2008

M. C. JORGE
Affiliation:
Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, FENOMEC Universidad Nacional Autónoma de México, Apdo. Postal 20-726, 01000 México, D.F., México email: [email protected]
A. A. MINZONI
Affiliation:
Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, FENOMEC Universidad Nacional Autónoma de México, Apdo. Postal 20-726, 01000 México, D.F., México email: [email protected]
C. A. VARGAS
Affiliation:
Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, FENOMEC Universidad Nacional Autónoma de México, Apdo. Postal 20-726, 01000 México, D.F., México email: [email protected]

Abstract

A steady-state bubble solution to the constrained mass conserving Allen–Cahn equation in a two-dimensional domain is constructed in the limit of small diffusivity. The solution is asymptotically constant inside a circle of radius rb centred at some unknown location x0 and has a sharp interface at the bubble radius that allows for a transition to a different asymptotically constant state outside the bubble. In a study by M. J. Ward (Metastable bubble solutions for the Allen–Cahn equation with mass conservation. SIAM J. Appl. Math. 56, 1996, 247–1279), the bubble centre was determined by a limiting solvability condition. The solution found by Ward suggests the existence of a corner type boundary layer where the normal derivative of the bubble solution readjusts to satisfy the no-flux condition at the boundary of the domain. This work is concerned with the details of the readjustment. A variational approach similar to the one of W. L. Kath, C. Knessl and B. J. Matkowsky (A variational approach to nonlinear singularly perturbed boundary-value problems. Stud. Appl. Math. 77, 1987, 61–88) shows the formation of a corner layer (for the derivative of the solution) which influences as a high-order correction the available determination of the bubble centre. This corner layer describes to leading order the readjustment of the level lines of the bubble to lines parallel to the boundary of the container; moreover, it provides to leading order a smooth solution across the corner layer.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alikakos, N., Bronsard, L. & Fusco, G. (1998) Slow motion in the gradient theory of phase transition via energy and spectrum. Calc. Var. Partial Differential Equations 6 (1), 3966.Google Scholar
[2]Alikakos, N. & Fusco, G. (1998) Slow dynamics for the Cahn–Hilliard equation in higher spatial dimensions, Part 2: The motion of bubbles. Arch. Rat. Mech. Anal. 141, 161.CrossRefGoogle Scholar
[3]Alikakos, N., Fusco, G. & Karali, G. (2004) Motion of bubbles towards the boundary for the Cahn–Hilliard equation. Eur. J. Appl. Math. 15 (1), 103124.CrossRefGoogle Scholar
[4]Bleistein, N. & Handelsman, R. A. (1986) Asymptotic Expansions of Integrals, Dover, New York.Google Scholar
[5]Cheviakov, A. F. & Ward, M. J. (2007) A two-dimensional metastable flame-front and a degenerate spike-layer problem. Interfaces Free Boundaries 9 (4), 513547.CrossRefGoogle Scholar
[6]Kath, W. L., Knessl, C. & Matkowsky, B. J. (1987) A variational approach to nonlinear singularly perturbed boundary-value problems. Stud. Appl. Math. 77, 6188.CrossRefGoogle Scholar
[7]Luckhaus, S. & Modica, L. (1989) The Gibbs-Thompson relation within the gradient theory of phase transitions. Arch. Rat. Mech. Anal. 107, 7183.CrossRefGoogle Scholar
[8]Modica, L. (1987) The gradient theory of phase transitions and the minimal interface criterion. Arch. Rat. Mech. Anal. 98, 123142.CrossRefGoogle Scholar
[9]Rubinstein, J., Sternberg, B. & Keller, J. B. (1989) Fast reaction, slow diffusion and curve shortening. SIAM J. Appl. Math. 49, 116133.CrossRefGoogle Scholar
[10]Ward, M. J. (1996) An asymptotic analysis of localized solutions for some reaction-diffusion models in multi-dimensional domains. Stud. Appl. Math. 97, 103126.CrossRefGoogle Scholar
[11]Ward, M. J. (1996) Metastable bubble solutions for the Allen–Cahn equation with mass conservation. SIAM J. Appl. Math. 56, 12471279.CrossRefGoogle Scholar
[12]Whitham, G. B. (1974) Linear and Nonlinear Waves, John Wiley, New York, USA.Google Scholar