Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T14:58:13.308Z Has data issue: false hasContentIssue false

Hotspot formation and dynamics for a continuum model of urban crime

Published online by Cambridge University Press:  20 July 2015

W. H. TSE
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T 1Z2, Canada email: [email protected], [email protected]
M. J. WARD
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T 1Z2, Canada email: [email protected], [email protected]

Abstract

The existence, stability, and dynamics of localized patterns of criminal activity are studied for the reaction–diffusion model of urban crime introduced by Short et al. (Math. Models. Meth. Appl. Sci.18(Suppl.), (2008), 1249–1267). In the singularly perturbed limit of small diffusivity ratio, this model admits hotspot patterns, where criminal activity of high amplitude is localized within certain narrow spatial regions. By using a combination of asymptotic analysis and numerical path-following methods, hotspot equilibria are constructed on a finite 1-D domain and their bifurcation properties analysed as the diffusivity of criminals is varied. It is shown, both analytically and numerically, that new hotspots of criminal activity can be nucleated in low-crime regions with inconspicuous crime activity gradient when the spatial extent of these regions exceeds a critical threshold. These nucleations are referred to as “peak insertion” events, and for the steady-state problem, they occur near a saddle-node bifurcation point characterizing hotspot equilibria. For the time-dependent problem, a differential algebraic (DAE) system characterizing the slow dynamics of a collection of hotspots is derived, and the results compared favourably with full numerical simulations of the PDE system. The asymptotic theory to construct hotspot equilibria, and to derive the differential algebraic system for quasi-steady patterns, is based on the resolution of a triple-deck structure near the core of each hotspot and the identification of so-called switchback terms.

Type
Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

M. J. W. gratefully acknowledges the grant support of NSERC (Canada).

References

[1]Berestycki, H., Wei, J. & Winter, M. (2014) Existence of symmetric and asymmetric spikes for a crime hotspot model. SIAM J. Math. Anal. 46 (1), 691719.CrossRefGoogle Scholar
[2]Brantingham, P. L. & Brantingham, P. J. (1987) Environmental criminology and crime analysis. In Wortley, R. K. & Mazerolle, L. (editors), Crime Patterns, McMillan, Willan Publishing 2008, New York, NY.Google Scholar
[3]Burke, J. & Knobloch, E. (2007) Homoclinic snaking: Structure and stability. Chaos 17 (3), 037102.CrossRefGoogle ScholarPubMed
[4]Brena-Medina, V. & Champneys, A. (2014) Subcritical Turing bifurcation and the morphogenesis of localized patterns. Phys. Rev. E. 90, 032923. http://journals.aps.org/pre/abstract/10.1103/PhysRevE.90.049902.Google Scholar
[5]Cantrell, R., Cosner, C. & Manasevich, R. (2012) Global bifurcation of solutions for crime modeling equations. SIAM J. Math. Anal. 44 (3)13401358.Google Scholar
[6]Chen, W. & Ward, M. J. (2009) Oscillatory instabilities and dynamics of multi-spike patterns for the one-dimensional Gray-Scott model. Europ. J. Appl. Math. 20 (2), 187214.Google Scholar
[7]Chen, L., Goldenfeld, N. & Oono, Y. (1994) Renormalization group theory for global asymptotic analysis. Phys. Rev. Lett. 73 (10), 13111315.Google Scholar
[8]Chen, W. & Ward, M. J. (2011) The stability and dynamics of localized spot patterns in the two-dimensional Gray-Scott model. SIAM J. Appl. Dyn. Syst. 10 (2), 582666.CrossRefGoogle Scholar
[9]Doedel, E. J. & Oldeman, B. (2009) AUTO07P: Continuation and Bifurcation Software for Ordinary Differential Equations. Technical report, Concordia University.Google Scholar
[10]Doelman, A., Gardner, R. A. & Kaper, T. J. (2001) Large stable pulse solutions in reaction-diffusion equations. Indiana U. Math. J. 50 (1)443507.Google Scholar
[11]Doelman, A. & Kaper, T. J. (2003) Semistrong pulse interactions in a class of coupled reaction-diffusion systems. SIAM J. Appl. Dyn. Sys. 2 (1), 5396.Google Scholar
[12]Doelman, A., Kaper, T. J. & Promislow, K. (2007) Nonlinear asymptotic stability of the semi-strong pulse dynamics in a regularized Gierer-Meinhardt model. SIAM J. Math. Anal. 38 (6), 17601789.Google Scholar
[13]Gu, Y., Wang, Q. & Yi, G. (2014) Stationary patterns and their selection mechanism of Urban crime models with heterogeneous near-repeat victimization effect. preprint, arXiv:1409.0835.Google Scholar
[14]Iron, D. and Ward, M. J. (2002) The dynamics of multi-spike solutions to the one-dimensional Gierer-Meinhardt model. SIAM J. Appl. Math. 62 (6), 19241951.Google Scholar
[15]Iron, D., Ward, M. J. & Wei, J. (2001) The stability of spike solutions to the one-dimensional Gierer-Meinhardt model. Physica D 150 (1–2), 2562.CrossRefGoogle Scholar
[16]Johnson, S. & Bower, K. (2005) Domestic burglary repeats and space-time clusters: The dimensions of risk. Europ. J. Criminology 2, 6792. http://euc.sagepub.com/content/2/1/67.full.pdf+html.Google Scholar
[17]Kolokolnikov, T. & Ward, M. J. (2003) Reduced-wave Green's functions and their effect on the dynamics of a spike for the Gierer-Meinhardt model. Europ. J. Appl. Math. 14 (5), 513545.Google Scholar
[18]Kolokolnikov, T., Ward, M. J. & Wei, J. (2005) The existence and stability of spike equilibria in the one-dimensional Gray-Scott model: The low feed-rate regime. Stud. Appl. Math. 115 (1), 2171.Google Scholar
[19]Kolokolnikov, T., Ward, M. J. & Wei, J. (2009) Spot self-replication and dynamics for the Schnakenburg model in a two-dimensional domain. J. Nonlinear Sci. 19 (1), 156.Google Scholar
[20]Kolokolnikov, T., Ward, M. J. & Wei, J. (2007) Self-replication of mesa patterns in reaction-diffusion models. Physica D 236 (2), 104122.CrossRefGoogle Scholar
[21]Kolokolnikov, T., Ward, M. J. & Wei, J. (2014) The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. DCDS-B 19 (5), 13731410.Google Scholar
[22]Lagerstrom, P. (1988) Matched Asymptotic Expansions: Ideas and Techniques, Applied Mathematical Sciences, Vol. 76, Springer-Verlag, New York.Google Scholar
[23]Lagerstrom, P. & Reinelt, D. (1984) Note on logarithmic switchback terms in regular and singular perturbation problems. SIAM J. Appl. Math. 44 (3), 451462.Google Scholar
[24]Lindsay, A. & Ward, M. J. (2010) Asymptotics of some nonlinear eigevalue problems for a mems capacitor: Part II: Multiple solutions and singular asymptotics. Europ. J. Appl. Math. 22 (2), 83123.Google Scholar
[25]Liu, W., Bertozzi, A. L. & Kolokolnikov, T. (2012) Diffuse interface surface tension models in an expanding flow. Comm. Math. Sci. 10 (1), 387418.Google Scholar
[26]Lloyd, D. J. B. & O'Farrell, H. (2013) On localised hotspots of an urban crime model. Physica D 253, 2329. http://www.sciencedirect.com/science/article/pii/S0167278913000468.CrossRefGoogle Scholar
[27]Painter, K. & Hillen, T. (2011) Spatio-temporal chaos in a chemotaxis model. Physica D 240 (4–5), 363375.Google Scholar
[28]Pitcher, A. B. (2010) Adding police to a mathematical model of burglary. Europ. J. Appl. Math. 21 (4–5), 401419.Google Scholar
[29]Popovic, N. & Szymolyan, P. (2004) A geometric analysis of the Lagerstrom model problem. J. Differ. Equ. 199 (2), 290325.Google Scholar
[30]Rademacher, J. D. M. (2013) First and second order semi-strong interaction in reaction-diffusion systems. SIAM J. Appl. Dyn. Syst. 12 (1), 175203.CrossRefGoogle Scholar
[31]Rodriguez, N. & Bertozzi, A. (2010) Local existence and uniqueness of solutions to a PDE model for criminal behavior. M3AS (special issue on Mathematics and Complexity in Human and Life Sciences) 20 (1), 14251457.Google Scholar
[32]Short, M. B., D'Orsogna, M. R., Pasour, V. B., Tita, G. E., Brantingham, P. J., Bertozzi, A. L. & Chayes, L. B. (2008) A statistical model of criminal behavior. Math. Models. Meth. Appl. Sci. 18 (Suppl.), 12491267.Google Scholar
[33]Short, M. B., Bertozzi, A. L. & Brantingham, P. J. (2010) Nonlinear patterns in urban crime - hotspots, bifurcations, and suppression. SIAM J. Appl. Dyn. Syst. 9 (2), 462483.CrossRefGoogle Scholar
[34]Short, M. B., Brantingham, P. J., Bertozzi, A. L. & Tita, G. E. (2010) Dissipation and displacement of hotpsots in reaction-diffusion models of crime. Proc. Nat. Acad. Sci. 107 (9), 39613965.Google Scholar
[35]Sun, W., Ward, M. J. & Russell, R. (2005) The slow dynamics of two-spike solutions for the Gray-Scott and Gierer-Meinhardt systems: Competition and oscillatory instabilities. SIAM J. Appl. Dyn. Syst. 4 (4), 904953.Google Scholar
[36]Ward, M. J. & Wei, J. (2003) Hopf bifurcations and oscillatory instabilities of spike solutions for the one-dimensional Gierer-Meinhardt model. J. Nonlinear Sci. 13 (2), 209264.Google Scholar
[37]Wei, J. (1999) On single interior spike solutions of the Gierer–Meinhardt system: Uniqueness and spectrum estimates. Europ. J. Appl. Math. 10 (4), 353378.Google Scholar
[38]Wei, J. (2008) Existence and stability of spikes for the Gierer-Meinhardt system. In: Chipot, M. (editor), Handbook of Differential Equations, Stationary Partial Differential Equations, Vol. 5, Elsevier, pp. 489581.Google Scholar
[39]Wilson, J. Q. & Kelling, G. L. (1982) Broken windows and police and neighborhood safety. Atlantic Mon. 249 (3), 2938.Google Scholar
[40]Zipkin, J. R., Short, M. B. & Bertozzi, A. L. (2014) Cops on the dots in a mathematical model of urban crime and police response. DCDS-B 19 (5), 14791506.Google Scholar