Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T08:58:27.266Z Has data issue: false hasContentIssue false

High-frequency spectral analysis of thin periodic acoustic strips: Theory and numerics

Published online by Cambridge University Press:  27 July 2010

S. D. M. ADAMS
Affiliation:
Department of Mathematics, Imperial College London, London SW7 2AZ, UK
K. D. CHEREDNICHENKO
Affiliation:
School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4AG, UK
R. V. CRASTER
Affiliation:
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, CanadaT6G 2G1 email: [email protected]
S. GUENNEAU
Affiliation:
Department of Mathematical Sciences, Liverpool University, Liverpool L69 3BX, UK

Abstract

This paper is devoted to the study of the asymptotic behaviour of the high-frequency spectrum of the wave equation with periodic coefficients in a ‘thin’ elastic strip Ση=(0, 1)×(−η/2, η/2), η > 0. The main geometric assumption is that the structure period is of the order of magnitude of the strip thickness η and is chosen in such a way that η−1 is a positive large integer. On the boundary ∂Ση, we set Dirichlet (clamped) or Neumann (traction-free) boundary conditions. Aiming to describe sequences of eigenvalues of order η−2 in the above problem, which correspond to oscillations of high frequencies of order η−1, we study an appropriately rescaled limit of the spectrum. Using a suitable notion of two-scale convergence for bounded operators acting on two-scale spaces, we show that the limiting spectrum consists of two parts: the Bloch (or band) spectrum and the ‘boundary’ spectrum. The latter corresponds to sequences of eigenvectors concentrating on the vertical boundaries of Ση, and is characterised by a problem set in a semi-infinite periodic strip with either clamped or stress-free boundary conditions. Based on the observation that some of the related eigenvalues can be found by solving an appropriate periodic-cell problem, we use modal methods to investigate finite-thickness semi-infinite waveguides. We compare our results with those for finite-thickness infinite waveguides given in Adams et al. (Proc. R. Soc. Lond. A, vol. 464, 2008, pp. 2669–2692). We also study infinite-thickness semi-infinite waveguides in order to gain insight into the finite-height analogue. We develop an asymptotic algorithm making use of the unimodular property of the modal method to demonstrate that in the weak contrast limit, and when wavenumber across the guide is fixed, there is at most one surface wave per gap in the spectrum. Using the monomode property of the waveguide we can consider the gap structure for the nth mode, when doing so, for traction-free boundaries, we find exactly one surface wave in each n-band gap.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, S. D. M., Craster, R. V. & Guenneau, S. (2008) Bloch waves in multi-layered acoustic waveguides. Proc. R. Soc. Lond. A 464, 26692692.Google Scholar
Adams, S. D. M., Craster, R. V. & Guenneau, S. (2009) Guided and standing Bloch waves in periodic elastic strips. Waves RandomComplex Media 19, 321346.CrossRefGoogle Scholar
Allaire, G. (1992) Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (6), 14821518.CrossRefGoogle Scholar
Allaire, G. & Capdeboscq, Y. (2002a) Homogenization and localization for a 1-D eigenvalue problem in a periodic medium with an interface. Ann. Mat. Pura Appl. (4) 181, 247282.CrossRefGoogle Scholar
Allaire, G. & Capdeboscq, Y. (2002b) Homogenization and localization for a 1-D eigenvalue problem in a periodic medium with an interface. Ann. Mat. 181, 247282.CrossRefGoogle Scholar
Allaire, G. & Conca, C. (1996) Bloch wave homogenization for a spectral problem in fluid-solid structures. Arch. Ration. Mech. Anal. 35 (3), 197257.CrossRefGoogle Scholar
Allaire, G. & Conca, C. (1998) Boundary layers in the homogenization of a spectral problem in fluid-solid structures. SIAM J. Math. Anal. 29, 343379.CrossRefGoogle Scholar
Allaire, G. & Conca, C. (1998b) Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures. Appl. 77, 153208.CrossRefGoogle Scholar
Bensoussan, A., Lions, J. L. & Papanicolaou, G. (1978) Asymptotic Analysis for Feriodic Atructures, North-Holland, Amsterdam.Google Scholar
Camley, R. E., Djafari-Rouhani, B., Dobrzynski, L. & Maradudin, A. A. (1983) Transverse elastic waves in periodically layered infinite and semi-infinite media. Phys. Rev. B 27 (12), 73187329.CrossRefGoogle Scholar
Castro, C. & Zuazua, E. (1996) Une remarque sur l'analyse asymptotique spectrale en homogénéisation. C. R. Acad. Sci. Paris Sér. I Math. 322, 10431047.Google Scholar
Castro, C. & Zuazua, E. (2000a) Low frequency asymptotic analysis of a string with rapidly oscillating density. SIAM J. Appl. Math. 60 (4), 12051223.CrossRefGoogle Scholar
Castro, C. & Zuazua, E. (2000b) High Frequency asymptotic analysis of a string with rapidly oscillating density. Euro. J. Appl. Math. 11 (6), 595622.CrossRefGoogle Scholar
Cherednichenko, K. D. & Guenneau, S. (2007) Bloch wave homogenisation for spectral asymptotic analysis of the periodic Maxwell operator. Waves Random Complex Media 17, 627651.CrossRefGoogle Scholar
Conca, C., Planchard, J. & Vanninathan, M. (1995) Fluids and Periodic Structures, RMA, J. Wiley and Masson, Paris.Google Scholar
Dossou, K. B., McPhedran, R. C., Botten, L. C., Asatryan, A. A. & de Sterke, C. M. (2007) Gap-edge asymptotics of defect modes in 2D photonic crystals. Opt. Express 15, 47534762.CrossRefGoogle ScholarPubMed
Figotin, A. & Kuchment, P. (1996) Band-gap structure of the spectrum of periodic and acoustic media. Part I. Scalar model. SIAM J. Appl. Math. 56, 6888.CrossRefGoogle Scholar
Figotin, A. & Vitebskiy, I. (2006) Slow light in photonic crystals. Waves Random Complex Media 16, 293382.CrossRefGoogle Scholar
Gralak, B., Enoch, S. & Tayeb, G. (2000) Anomalous refractive properties of photonic crystals. J. Opt. Soc. Am. A 17, 122131.CrossRefGoogle ScholarPubMed
Harrison, J. M., Kuchment, P., Sobolev, A. & Winn, B. (2007) On occurrence of spectral edges for periodic operators inside the Brillouin zone. J. Phys. A – Math. 40, 75977618.Google Scholar
Kohn, W. & Luttinger, J. (1955) Theory of donor states in silicon. Phys. Rev. 98, 915922.CrossRefGoogle Scholar
Kronig, R. L. & Penney, W. G. (1931) Quantum mechanics in crystal lattices. Proc. R. Soc. A 130, 499531.Google Scholar
Kuchment, P. (1993) Floquet Theory for Partial Differential Equation, Birkhäuser, Basel.CrossRefGoogle Scholar
Lin, S. Y., Hietala, V. M., Wang, L. & Jones, E. D. (1996) Highly dispersive photonic band gap prism. Opt. Lett. 21, 17711773.CrossRefGoogle ScholarPubMed
Lobo, M. & Pérez, E. (2001) The skin effect in vibrating systems with many concentrated masses. Math. Meth. Appl. Sci. 24, 5980.3.0.CO;2-4>CrossRefGoogle Scholar
Movchan, A. B. & Slepyan, L. I. (2007) Band gap Greens functions and localized oscillations. Proc. R. Soc. Lond. A 463, 27092727.Google Scholar
Nguetseng, G. (1989) A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20, 608623.CrossRefGoogle Scholar
Pendry, J. B. (1994) Photonic band structures. J. Mod. Opt. 41, 209229.CrossRefGoogle Scholar
Poulton, C. G., Botten, L. C., McPhedran, R. C., Nicorovici, N. A. & Movchan, A. B. (2001) Noncommuniting limits in electromagnetic scattering: asymptotic analysis for an array of highly conducting inclusions. SIAM J. Appl. Math. 61, 17061730.Google Scholar
Pagneux, V. & Maurel, A. (2002) Lamb wave propagation in inhomogeneous elastic waveguides. Proc. R. Soc. Lond. A 458, 1913–1930CrossRefGoogle Scholar
Russell, P. S., Marin, E., Diez, A.Guenneau, S. & Movchan, A. B. (2003) Sonic band gap PCF preforms: Enhancing the interaction of sound and light. Opt. Express 11, 2555.CrossRefGoogle ScholarPubMed
Zhikov, V. V. (2000) On an extension of the method of two-scale convergence and its applications. Sb. Math. 191 (7–8), 9731014.CrossRefGoogle Scholar
Zolla, F., Bouchitte, G. & Guenneau, S. (2008) Pure currents in foliated waveguides. Q. J. Mech. Appl. Math. 61 (6), 453474.CrossRefGoogle Scholar