Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T15:00:54.614Z Has data issue: false hasContentIssue false

Grain boundaries in the Swift–Hohenberg equation

Published online by Cambridge University Press:  10 August 2012

MARIANA HARAGUS
Affiliation:
Université de Franche-Comté, Laboratoire de Mathématiques, 25030 Besançon Cedex, France email: [email protected]
ARND SCHEEL
Affiliation:
School of Mathematics, University of Minnesota, 206 Church St. S.E., Minneapolis, MN 55455, USA email: [email protected]

Abstract

We study the existence of grain boundaries in the Swift–Hohenberg equation. The analysis relies on a spatial dynamics formulation of the existence problem and a centre-manifold reduction. In this setting, the grain boundaries are found as heteroclinic orbits of a reduced system of ordinary differential equations in normal form. We show persistence of the leading-order approximation using transversality induced by wavenumber selection.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Cross, M. & Hohenberg, P. (1993) Pattern formation out of equilibrium. Rev. Modern Phys. 65, 8511112.Google Scholar
[2]Cross, M. & Newell, A. (1984) Convection patterns in large aspect ratio systems. Physica D 10, 299328.Google Scholar
[3]Ercolani, N., Indik, R., Newell, A. & Passot, T. (2000) The geometry of the phase diffusion equation. J. Nonlinear Sci. 10, 223274.Google Scholar
[4]Ercolani, N., Indik, R., Newell, A. & Passot, T. (2003) Global description of patterns far from onset: A case study. Complexity and nonlinearity in physical systems (Tucson, AZ, 2001). Phys. D 184, 127140.CrossRefGoogle Scholar
[5]Ercolani, N. & Venkataramani, S. (2009) A variational theory for point defects in patterns. J. Nonlinear Sci. 19, 267300.Google Scholar
[6]Fiedler, B. & Scheel, A. (2003) Spatio-temporal dynamics of reaction-diffusion patterns. In: Kirkilionis, M., Krmker, S., Rannacher, R. and Tomi, F. (editors), Trends in Nonlinear Analysis, Springer-Verlag, Berlin, Germany, 23152.Google Scholar
[7]Haragus, M. & Iooss, G. (2011) Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems. Universitext Series. Springer-Verlag, London; EDP Sciences, Les Ulis, France.Google Scholar
[8]Haragus, M. & Scheel, A. (2007) Interfaces between rolls in the Swift-Hohenberg equation. Int. J. Dyn. Syst. Differ. Equ. 1, 8997.Google Scholar
[9]Haragus, M. & Scheel, A. (to appear) Dislocations in an anisotropic Swift-Hohenberg equation. Comm. Math. Phys.Google Scholar
[10]Iooss, G. & Adelmeyer, M. (1998) Topics in Bifurcation Theory and Applications, 2nd ed., Advanced Series in Nonlinear Dynamics, 3, World Scientific Publishing, River Edge, NJ.Google Scholar
[11]James, G. & Sire, Y. (2008) Center Manifold Theory in the Context of Infinite One-Dimensional Lattices. The Fermi-Pasta-Ulam problem, Lecture Notes in Physics No. 728, Springer, Berlin, Germany, pp. 208238.Google Scholar
[12]Kirchgässner, K. (1982) Wave-solutions of reversible systems and applications. J. Differ. Equ. 45 (1), 113127.Google Scholar
[13]Malomed, B., Nepomnyashchy, A. & Tribelsky, M. (1990) Domain boundaries in convection patterns. Phys. Rev. A 42, 72447263.Google Scholar
[14]Mielke, A. (1991) Hamiltonian and Lagrangian Flows on Center Manifolds. With Applications to Elliptic Variational Problems, Lecture Notes in Mathematics No. 1489, Springer-Verlag, Berlin, Germany.Google Scholar
[15]Mielke, A. (1997) Instability and stability of rolls in the Swift-Hohenberg equation. Comm. Math. Phys. 189, 829853.Google Scholar
[16]Mielke, A. (2002) The Ginzburg-Landau Equation in Its Role as a Modulation Equation. Handbook of Dynamical Systems, Vol. 2, North-Holland, Amsterdam, Netherlands, pp. 759834.Google Scholar
[17]Newell, A. (1988) The dynamics of patterns: A survey. In: Proceedings of the Conference on Propagation in Systems Far From Equilibrium, Les Houches, 1987, Springer Ser. Synergetics No. 41, Springer, Berlin, pp. 122–155.Google Scholar
[18]Sandstede, B. & Scheel, A. (2004) Defects in oscillatory media: Toward a classification. SIAM J. Appl. Dyn. Syst. 3, 168.Google Scholar
[19]Sandstede, B. & Scheel, A. (2008) Relative Morse indices, Fredholm indices, and group velocities. Discr. Cont. Dyn. Sys. 20, 139158.Google Scholar
[20]Scheel, A. (2003) Radially symmetric patterns of reaction-diffusion systems. Mem. Am. Math. Soc. 165.Google Scholar
[21]Schneider, G. (1995) Validity and limitation of the Newell-Whitehead equation. Math. Nachr. 176, 249263.Google Scholar
[22]van den Berg, G. & van der Vorst, R. (2000) A domain-wall between single-mode and bimodal states. Diff. Int. Equ. 13, 369400.Google Scholar
[23]van Saarloos, W. & Hohenberg, P. (1992) Fronts, pulses, sources and sinks in generalized complex GinzburgLandau equations. Physica D 56, 303367.CrossRefGoogle Scholar
[24]Vanderbauwhede, A. (1989) Centre Manifolds, Normal Forms and Elementary Bifurcations, Dynam. Report. Ser. Dynam. Systems Appl. vol. 2, Wiley, Chichester, UK, pp. 89169.Google Scholar
[25]Vanderbauwhede, A. & Iooss, G. (1992) Center Manifold Theory in Infinite Dimensions, Dynam. Report. Expositions Dynam. Systems (N.S.), vol. 1, Springer, Berlin, Germay, pp. 125163.Google Scholar