Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T19:50:15.104Z Has data issue: false hasContentIssue false

Global instability of viscous fingering in a Hele–Shaw cell: formation of oscillatory fingers

Published online by Cambridge University Press:  16 July 2009

Jian-Jun Xu
Affiliation:
Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada H3A 2K6

Abstract

This work deals with the global instability mechanism of viscous fingering in a Hele–Shaw cell with the inclusion of surface tension. We investigate the interaction and propagation of travelling waves in the system, and obtain two discrete sets of global wave modes: symmetrical modes and anti-symmetrical modes. We call the instability mechanism determined by these global modes the global trapped wave (GTW) instability. A unique global, neutrally stable state of the system is found; it explains the formation of the narrow, oscillatory fingers discovered by Couder el al. (1986) and by Kopf-Sill & Homsy (1987).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramovitz, M. & Stegun, I. A. (eds) 1964 Handbook of Mathematical Functions. Naticnal Bureau of Standards.Google Scholar
Bensimon, D., Kadanoff, L. P., Liang, S., Shraiman, B. I. & Chao, T. 1986 Viscous flows in two dimensions. Rev. Mod. Phys. 58, (4), 977.CrossRefGoogle Scholar
Bensimon, D., Pelce, P. & Shraiman, B. I. 1987 Dynamics of curved fronts and pattern selection. J. Physique 48, 2081.Google Scholar
Combescot, R., Dombre, T., Hakin, V. & Pomeau, Y. 1986 Shape selection of Saffman–Taylor fingers. Phys. Rev. Lett. 56, (19), 2036.CrossRefGoogle ScholarPubMed
Couder, Y., Gerard, N. & Rabaud, M. 1986 Narrow fingers in the Saffman–Taylor instability. Phys. Rev. A. 34, 5175.Google Scholar
DeGregoria, A. J. & Schartz, L. W. 1986 A boundary-integral method for two-phase displacement in Hele–Shaw cell. J. Fluid Mech. 164, 383.CrossRefGoogle Scholar
Hill, S. 1952 Channelling in packed columns. Chem. Eng. Sci. 1, 247.Google Scholar
Homsy, G. M. 1987 Viscous fingering in porous media. Ann. Rev. Fluid Mech. 19, 271.CrossRefGoogle Scholar
Hong, D. C. & Langer, J. S. 1986 Analytic theory of the selection mechanism in the Saffman–Taylor problem. Phys. Rev. Lett. 56, 2032.CrossRefGoogle ScholarPubMed
Howison, S. D., Lacey, A. A. & Ockendon, J. R. 1988 Hele–Shaw free-boundary problems with suction. Q. J. Mech. Appl. Math. 41, 183.CrossRefGoogle Scholar
Kessler, D. A. & Levine, H. 1985 Stability of finger patterns in Hele–Shaw cells. Phys. Rev. A. 32, 1930.Google Scholar
Kessler, D. A. & Levine, H. 1986 Theory of the Saffman–Taylor ‘finger’ patterns (i). 33, 2621.Google Scholar
Kevorkian, J. & Cole, J. D. 1981 Perturbation Methods in Applied Mathematics. Applied Mathematical Sciences, Vol. 34, Springer-Verlag.CrossRefGoogle Scholar
Kopf-Sill, A. R. & Homsy, G. M. 1987 Narrow fingers in a Hele–Shaw cell. Phys. Fluids 31, 18.CrossRefGoogle Scholar
Lin, C. C. & Lau, Y. Y. 1975 On spiral waves in galaxies – a gas dynamic approach. SIMA. J. Appl. Math. 29, (2), 352.CrossRefGoogle Scholar
Mclean, J. & Saffman, P. G. 1981 The effect of surface tension on the shape of fingers in a Hele–Shaw cell. J. Fluid Mech. 102, 455.CrossRefGoogle Scholar
Meiburg, E. & Homsy, G. M. 1988 Nonlinear unstable viscous fingers in Hele–Shaw flows (II). Phys. Fluids 31, (3), 429.Google Scholar
Saffman, P. G. & Taylor, G. I. 1958 The penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous liquid. Proc. R. Soc. London Ser. A. 245, 312.Google Scholar
Tabling, P., Zocchi, G. & Libchaber, A. 1987 An experimental study of the Saffman–Taylor instability. J. Fluid Mech. 117, 67.CrossRefGoogle Scholar
Tanveer, S. 1987 Analytic theory for the selection of a symmetric Saffman–Taylor finger in a Hele–Shaw cell. Phys. Fluid 30, (8), 1589.Google Scholar
Xu, J. J. 1989 Interfacial wave theory for dendritic structure of a growing needle crystal – (I). Local instability mechanism; (II). Wave emission mechanism at turning point. Phys. Rev. A. 40, (3), 1599, 1609.Google Scholar
Xu, J. J. 1990 Global wave mode theory for the formation of dendritic structure on a growing crystal. Physica Status Solidi, (b) 157, 577.CrossRefGoogle Scholar
Xu, J. J. 1990 Global neutral stability of dendrite growth and selection condition of tip-velocity. J. Crystal Growth 100, 481.Google Scholar
Xu, J. J. 1991 Interfacial wave theory of solidification: Dendritic pattern formation and selection of growth-velocity. Phys. Rev. A. 43, (2), 930.Google Scholar