Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T00:29:40.218Z Has data issue: false hasContentIssue false

Equilibrium order parameters of nematic liquid crystals in the Landau-de Gennes theory

Published online by Cambridge University Press:  25 February 2010

APALA MAJUMDAR*
Affiliation:
Mathematical Institute, University of Oxford, 24–29 St.Giles, Oxford, OX1 3LB, UK email: [email protected]

Abstract

We study equilibrium liquid crystal configurations in three-dimensional geometries, within the continuum Landau-de Gennes theory. We obtain explicit bounds for the equilibrium scalar order parameters in terms of the temperature and material-dependent constants. We explicitly quantify the temperature regimes where the Landau-de Gennes predictions match and the temperature regimes where the Landau-de Gennes predictions do not match the probabilistic second-moment definition of the Q-tensor order parameter. The regime of agreement may be interpreted as the regime of validity of the Landau-de Gennes theory since the Landau-de Gennes theory predicts large values of the equilibrium scalar order parameters – larger than unity, in the low-temperature regime. We discuss a modified Landau-de Gennes energy functional which yields physically realistic values of the equilibrium scalar order parameters in all temperature regimes.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bahadur, B. (1991) Liquid Crystal: Applications and Uses, World Scientific.CrossRefGoogle Scholar
[2]Ball, J. M. (2007) Mathematical theories of liquid crystals. Graduate Lecture Course. Available on request.Google Scholar
[3]Ball, J. M. & Majumdar, A. (2009) Nematic liquid crystals: from Maier-Saupe to a continuum theory. Accepted for publication in Molecular Crystals and Liquid Crystals, Proceedings of the ECLC 2009.Google Scholar
[4]Bethuel, F., Brezis, H. & Hélein, F. (1993) Asymptotics for the minimization of a Ginzburg–Landau functional. Calc. Var. Partial Differ. Equ. 1 (2), 123148.CrossRefGoogle Scholar
[5]Chandrasekhar, S. (1992) Liquid Crystals, Cambridge University Press.CrossRefGoogle Scholar
[6]Dacorogna, B. (1989) Direct methods in the calculus of variations. In Applied Mathematical Sciences, ed. Antman, S. S., Marsden, J. E., Sirovich, L. Vol. 78, Springer.Google Scholar
[7]Davis, T. & Gartland, E. (1998) Finite element analysis of the Landau–de Gennes minimization problem for liquid crystals. SIAM J. Numer. Anal. 35, 336362.CrossRefGoogle Scholar
[8]De Gennes, P. D. & Prost, J. (1974) The Physics of Liquid Crystals, Clarendon Press, Oxford, UK.Google Scholar
[9]Evans, L. (1998) Partial Differential Equations. American Mathematical Society, Providence, RI.Google Scholar
[10]Forest, M. G., Wang, Q. & Zhou, H. (2000a) Homogeneous pattern selection and director instabilities of nematic liquid crystal polymers induced by elongational flows. Phys. Fluids 12 (3), 490498.CrossRefGoogle Scholar
[11]Forest, M. G., Wang, Q. & Zhou, H. (2000b) Exact banded patterns from a Doi-Marruci-Greco model of nematic liquid crystal polymers. Phys. Rev. E 61 (6), 66556662.Google ScholarPubMed
[12]Gilbarg, D. & Trudinger, N. (1977) Elliptic partial differential equations of second order. In Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, 2nd ed., Vol. 224, Springer.Google Scholar
[13]Katriel, J., Kventsel, G. F., Luckhurst, G. R. & Sluckin, T. J. (1986) Free energies in the Landau and molecular field approaches. Liq. Cryst. 1, 337–55.CrossRefGoogle Scholar
[14]Lin, F. H. & Liu, C. (2001) Static and dynamic theories of liquid crystals. J. Partial Differ. Equ. 14 (4), 289330.Google Scholar
[15]Mkaddem, S. & Gartland, E. C. (2000) Fine structure of defects in radial nematic droplets. Phys. Rev. E 62 (5), 66946705.Google ScholarPubMed
[16]Mottram, N. J. & Newton, C. (2004) Introduction to Q-tensor Theory. Research Report 10. Department of Mathematics, University of Strathclyde.Google Scholar
[17]Priestley, E. B., Wojtowicz, P. J. & Sheng, P. (1975) Introduction to Liquid Crystals, Plenum, New York.CrossRefGoogle Scholar
[18]Stephen, M. J. & Straley, J. P. (1974) Physics of liquid crystals. Rev. Mod. Phys. 46, 617701.CrossRefGoogle Scholar