Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-03T02:38:32.689Z Has data issue: false hasContentIssue false

Coronas and the space charge problem

Published online by Cambridge University Press:  16 July 2009

Chris Budd
Affiliation:
School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK

Abstract

This paper presents a detailed analysis of a model for a positive corona discharge, and discusses the relationship between the model and the space charge equations which predict the macroscopic motion of charged ions in a gas. The study is restricted to the asymptotic behaviour of the discharge for large time, and it does not consider its initial or burst phases in detail.

One prediction of this model is the existence of a steady state solution to the space charge equations that may lose stability to a travelling wave disturbance which then grows into a strongly pulsed oscillation.

We compare some numerical calculations with an asymptotic analysis of the discharge and find good agreement.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Salam, M. 1985 Positive wire to plane corona as influenced by atmospheric humidity. IEEE Trans. Ind. 21, 3543. (Apr.).CrossRefGoogle Scholar
Abdel-Salam, M., Abdallah, H., Abdel-Sattar, S. & Farghally, M. 1987 Positive corona in point plane gaps as influenced by wind. IEEE Trans. Elect. Insul. 22.Google Scholar
Abdel-Salam, M. & Khalifa, M. 1974 Third international conference on gas discharges, London, UK: 311–14.Google Scholar
Abramowitz, M. & Stegun, I. 1964 Handbook of mathematical functions. Dover.Google Scholar
Beattie, J. 1975 The positive glow discharge. PhD thesis, University Waterloo, Canada.Google Scholar
Budd, C. 1989 Coronas and the space charge problem. Oxford NAGp Report 88/11, UK.Google Scholar
Budd, C., Friedman, A., McLeod, B. & Wheeler, A. 1990 The space charge problem. SIAM J. Appl. Math. 50, 181–98.CrossRefGoogle Scholar
Budd, C. & Wheeler, A. 1988a A new approach to the space charge problem. Proc. Roy. Soc. Lond. A 417, 389415.Google Scholar
Budd, C. & Wheeler, , 1988b Exact solutions of the space charge problem using the hodograph method. IMAJAM 40, 114.Google Scholar
Cade, R. 1989 Electrohydrostatic equilibrium and field solutions under space charge conditions. Submitted to IMAJAM.Google Scholar
Cimatti, G. 1990 Existence of weak solutions for the space charge problem. IMAJAM, 44, pp. 185–95.Google Scholar
Corbin, R. 1987 Electrical performance of serrated strip electrodes in electrostatic precipitators. CEGB report TPRD/L/ES 0680/M87, UK.Google Scholar
Cross, J. 1987 Electrostatics, principles, problems and applications. Adam Hilger.Google Scholar
Davis, J. & Hoburg, J. 1986 HVDC transmission line computations using finite element and characteristic methods. J. Electrostatics. 18, 122.CrossRefGoogle Scholar
Feynman, R. 1964 The Feynman lectures in Physics. Addison-Wesley.CrossRefGoogle Scholar
Guckenheimer, J. & Holmes, P. 1983 Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer-Verlag.CrossRefGoogle Scholar
Hermstein, W. 1960 Arch. Elektrostech, 45, 209–78.Google Scholar
Hutton, A. 1986 FEAT finite element software. CEGB Report TPRD/B/0868/P86, UK.Google Scholar
Janischewskyj, W. & Gela, G. 1979 Finite element solution for electric fields and coronating DC transmission lines. IEEE-PAS, 98, 1000–12.Google Scholar
Kapzow, N. 1955 Elektische vorgange in Gasen und im Vacuum. VEB Deutscher Verlag der Wissenschaften, Berlin.Google Scholar
Khalifa, M. & Abdel-Salam, M. 1973 Calculating the surface fields of conductors in corona. Proc. IEE, 1574–75.Google Scholar
Kuffel, E. & Zaengl, W. 1984 High voltage engineering fundamentals. Pergamon.Google Scholar
Lawless, P., McLean, K., Sparks, L. & Ramsey, G. 1986 Negative coronas in write-plate electrostatic precipitators — Parts I and II. J. Electrostatics, 18, 199217; 219–31.CrossRefGoogle Scholar
Loeb, L. 1965 Electrical coronas — their basic physical mechanism. Berkeley University Press.CrossRefGoogle Scholar
Meek, J. & Craggs, J. 1978 Electrical breakdown in gases. Wiley.Google Scholar
Morrow, R. 1981 Numerical solution of hyperbolic equations for electron drift in sirong1y non uniform electric fields. J. Comp. Phys., 43, 115.CrossRefGoogle Scholar
Morrow, R. 1985 Theory of negative coronas in Oxygen. Phys. Rev. A, 32, 17991809.CrossRefGoogle ScholarPubMed
Nasser, E. 1971 Fundamentals of gaseous ionization and plasma electronics. Wiley.Google Scholar
Peek, F. 1929 Dielectric phenomena in high voltage engineering. New York: McGraw-Hill.Google Scholar
Rogowski, W. 1936 Z. Phys. 100, 110.CrossRefGoogle Scholar
Sarma, M. & Janischewskyj, W. 1969 DC corona on smooth conductors in air. Proc. IEE, 116, 161–66.Google Scholar
Schilling, R. & Schachter, H. Y. 1967 J. Appl. Phys. 38, 1643–46.CrossRefGoogle Scholar
Sigmond, R. 1978 Corona discharge. In: Meeks, J. and Craggs, J. (editors), Electrical breakdown of gases. Wiley.Google Scholar
Sigmond, R. 1982 Simple approximate treatment of unipolar space charge dominated coronas: the Warburg law and the saturation current. J. Appl. Phys., 53, 891–8.Google Scholar
Sigmond, R. 1986 The unipolar space charge flow equation. J. Electrostatics, 18, 249–72.CrossRefGoogle Scholar
Smith, S. 1987 Congruent harmonic and space charge electrostatic fields. IMAJAM, 39, 189214.Google Scholar
Townsend, J. 1914 The potentials required to maintain currents between coaxial cylinders. Phil. Mag., 28, 8390.CrossRefGoogle Scholar
Wintle, H. 1986 Point plane and edge plane space charge limited flows. IEEE Trans. Elect. Insul., 21, (3), 365373.CrossRefGoogle Scholar
Wintle, H. 1987 Space charge limited current in the needle plane geometry. J. Electrostatics, 19,257274.CrossRefGoogle Scholar