Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T13:03:02.912Z Has data issue: false hasContentIssue false

Chaotic backward shift operator on Chebyshev polynomials

Published online by Cambridge University Press:  21 December 2018

MÁRTON KISS
Affiliation:
Department of Differential Equations, Institute of Mathematics, Budapest University of Technology and Economics, H 1111 Budapest, Müegyetem rkp. 3-9, Hungary email: [email protected]
TAMÁS KALMÁR-NAGY
Affiliation:
Department of Fluid Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, H 1111 Budapest, Müegyetem rkp. 3-9, Hungary email: [email protected]

Abstract

We obtain the representation of the backward shift operator on Chebyshev polynomials involving a principal value (PV) integral. Twice the backward shift on the space of square-summable sequences l2 displays chaotic dynamics, thus we provide an explicit form of a chaotic operator on L2 (−1, 1, (1−x2)–1/2) using Cauchy’s PV integral. We explicitly calculate the periodic points of the operator and provide examples of unbounded trajectories, as well as chaotic ones. Histograms and recurrence plots of shifts of random Chebyshev expansions display interesting behaviour over fractal measures.

Type
Papers
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayart, F. & Matheron, É. (2009) Dynamics of Linear Operators, Vol. 179, Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Bernardes, N. C., Bonilla, A., Müller, V. & Peris, A. (2015) Li–Yorke chaos in linear dynamics. Ergod. Theory Dyn. Syst. 35(6), 17231745.CrossRefGoogle Scholar
Bourdon, P. & Shapiro, J. H. (1997) Cyclic Phenomena for Composition Operators, Vol. 596, American Mathematical Society.Google Scholar
Boyd, J. P. (2001) Chebyshev and Fourier Spectral Methods, Courier Corporation. Dover Publications, Mineola, NY.Google Scholar
Bronshtein, I. N. & Semendyayev, K. A. (2013) Handbook of Mathematics, Springer Science & Business Media.Google Scholar
Chan, K. C. (2002) The density of hypercyclic operators on a Hilbert space. J. Operat. Theor. 47(1), 131142.Google Scholar
Conejero, J. A., Lizama, C. & Escribá, F. D. A. R. (2015) Chaotic behaviour of the solutions of the Moore-Gibson-Thompson equation. Appl. Math. Inf. Sci. 9(5), 22332238.Google Scholar
Desch, W., Schappacher, W. & Webb, G. F. (1997) Hypercyclic and chaotic semigroups of linear operators. Ergod. Theory Dyn. Syst. 17(4), 793819.CrossRefGoogle Scholar
Dyson, J., Villella-Bressan, R. & Webb, G. (1997) Hypercyclicity of solutions of a transport equation with delays. Nonlinear Anal. Theory Methods Appl. 29(12), 13431351.CrossRefGoogle Scholar
Elliott, D. (1963) A Chebyshev series method for the numerical solution of Fredholm integral equations. Comput. J. 6(1), 102112, doi: 10.1093/comjnl/6.1.102.CrossRefGoogle Scholar
Emamirad, H. (1998) Hypercyclicity in the scattering theory for linear transport equation. Trans. Am. Math. Soc. 350(9), 37073716.CrossRefGoogle Scholar
Feldman, N. S. (2001) Linear chaos. preprint.Google Scholar
Fu, X.-C. & Duan, J. (1999) Infinite-dimensional linear dynamical systems with chaoticity. J. Nonlinear Sci. 9(2), 197211.Google Scholar
Gakhov, F. D., Sneddon, I. N., Stark, M. & Ulam, S. (2014) Boundary Value Problems, International Series in Pure and Applied Mathematics, Elsevier Science.Google Scholar
Gethner, R. M. & Shapiro, J. H. (1987) Universal vectors for operators on spaces of holomorphic functions. Proc. Am. Math. Soc. 100(2), 281288.CrossRefGoogle Scholar
Gil, A., Segura, J. & Temme, N. M. (2007) Numerical Methods for Special Functions, SIAM e-books, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.CrossRefGoogle Scholar
Godefroy, G. & Shapiro, J. H. (1991) Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal. 98(2), 229269.CrossRefGoogle Scholar
Grosse-Erdmann, K.-G. & Manguillot, A. P. (2011) Linear Chaos, Springer Science & Business Media.CrossRefGoogle Scholar
Gulisashvili, A. & MacCluer, C. R. (1996) Linear chaos in the unforced quantum harmonic oscillator. J. Dyn. Syst. Meas. Control 118(2), 337338.CrossRefGoogle Scholar
Hahn, S. L. (1996) Hilbert Transforms in Signal Processing, Artech House Signal Processing Library, Artech House, Boston, MA.Google Scholar
Herrero, D. A. (1992) Hypercyclic operators and chaos. J. Operat. Theor. 28(1), 93103.Google Scholar
Hou, B., Tian, G. & Zhu, S. (2012) Approximation of chaotic operators. J. Operat. Theor. 67(2), 469493.Google Scholar
Kalmár-Nagy, T. & Kiss, M. (2017) Complexity in linear systems: a chaotic linear operator on the space of odd 2π-periodic functions. Complexity 2017, doi: 10.1155/2017/6020213.CrossRefGoogle Scholar
King, F. W. (2009) Hilbert Transforms, 1st ed., Vol. 1, Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, doi: 10.1017/CBO9780511721458.Google Scholar
Kowalski, K. & Steeb, W.-H. (1991) Nonlinear Dynamical Systems and Carleman Linearization, World Scientific.CrossRefGoogle Scholar
Krantz, S. G. (2009) Explorations in Harmonic Analysis: With Applications to Complex Function Theory and the Heisenberg Group, 1st ed., Applied and Numerical Harmonic Analysis, Birkhäuser Basel.CrossRefGoogle Scholar
MacCluer, C. R. (1992) Chaos in linear distributed systems. J. Dyn. Syst. Meas. Control 114(2), 322324.CrossRefGoogle Scholar
Martínez-Giménez, F., Oprocha, P. & Peris, A. (2013) Distributional chaos for operators with full scrambled sets. Mathematische Zeitschrift 274(1–2), 603612.CrossRefGoogle Scholar
Martínez-Giménez, F. & Peris, A. (2002) Chaos for backward shift operators. Int. J. Bifurcat. Chaos 12(8), 17031715.CrossRefGoogle Scholar
Protopopescu, V. & Azmy, Y. Y. (1992) Topological chaos for a class of linear models. Math. Models Methods Appl. Sci. 2(1), 7990.CrossRefGoogle Scholar
Rolewicz, S. (1969) On orbits of elements. Stud. Math. 32(1), 1722.CrossRefGoogle Scholar
Sadosky, C. (1979) Interpolation of Operators and Singular Integrals: An Introduction to Harmonic Analysis, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker Inc.Google Scholar
Salas, H. N. (1995) Hypercyclic weighted shifts. Transactions of the American Mathematical Society 347(3), 931004.CrossRefGoogle Scholar
Shapiro, J. H. (2001) Notes on the Dynamics of Linear Operators. Unpublished Lecture Notes (available at www.math.msu.edu/shapiro).Google Scholar