Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T11:49:09.116Z Has data issue: false hasContentIssue false

Analyticity for a class of non-linear evolutionary pseudo-differential equations

Published online by Cambridge University Press:  02 September 2014

XENAKIS IOAKIM
Affiliation:
Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus emails: [email protected], [email protected]
YIORGOS-SOKRATIS SMYRLIS
Affiliation:
Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus emails: [email protected], [email protected]

Abstract

We study the analyticity properties of solutions for a class of non-linear evolutionary pseudo-differential equations possessing global attractors. In order to do this we utilise an analyticity criterion for spatially periodic functions, which involves the rate of growth of a suitable norm of the nth derivative of the solution, with respect to the spatial variable, as n tends to infinity. This criterion can be used to a wide class of dissipative-dispersive partial differential equations, provided they possess global attractors. Using this criterion and the spectral method developed in Akrivis et al. [1] we have improved previous results.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Akrivis, G., Papageorgiou, D. T. & Smyrlis, Y.-S. (2013) On the analyticity of certain dissipative-dispersive systems Bull. Lond. Math. Soc. 45, 5260.Google Scholar
[2]Benney, D. J. (1966) Long waves on liquid films J. Math. and Phys. 45, 150155.Google Scholar
[3]Cohen, B. I., Krommes, J. A., Tang, W. M. & Rosenbluth, M. N. (1976) Non-linear saturation of the dissipative trapped ion mode by mode coupling. Nucl. Fusion 16, 971992.Google Scholar
[4]Collet, P., Eckmann, J.-P., Epstein, H. & Stubbe, J. (1993) Analyticity for the Kuramoto-Sivashinsky equation. Phys. D 67, 321326.Google Scholar
[5]Coward, A. V., Papageorgiou, D. T. & Smyrlis, Y.-S. (1995) Nonlinear stability of oscillatory core-annular flow. A generalized Kuramoto-Sivashinsky equation with time periodic coefficients. Z. Angew. Math. Phys. 46, 139.Google Scholar
[6]Frankel, M. & Roytburd, V. (2008) Dissipative dynamics for a class of nonlinear pseudo-differential equations. J. Evol. Equ. 8, 491512.CrossRefGoogle Scholar
[7]Gonzalez, A. & Castellanos, A. (1996) Nonlinear electrohydrodynamic waves on films falling down an inclined plane Phys. Rev. E 53 (4), 35733578.Google Scholar
[8]Goodman, J. (1994) Stability of the Kuramoto-Sivashinsky and related systems. Comm. Pure Appl. Math. 47, 293306.Google Scholar
[9]Hooper, A. P. & Grimshaw, R. (1985) Nonlinear instability at the interface between two fluids. Phys. Fluids 28, 3745.CrossRefGoogle Scholar
[10]Ioakim, X., & Smyrlis, Y.-S. (2014) Investigation of the analyticity of dissipative-dispersive systems via a semigroup method. J. Math. Anal. Appl. 420 (2), 11161128. [DOI: 10.1016/j.jmaa.2014.06.023]CrossRefGoogle Scholar
[11]Ioakim, X. & Smyrlis, Y.-S.Analyticity for Kuramoto–Sivashinsky type equations in two spatial dimensions, submitted for publication.Google Scholar
[12]Kawahara, T. (1983) Formation of saturated solitons in a nonlinear dispersive system with instability and dissipation. Phys. Rev. Lett. 51, 381382.Google Scholar
[13]Kawahara, T. & Toh, S. (1985) Nonlinear dispersive waves in the presence of instability and damping. Phys. Fluids 28, 16361638.CrossRefGoogle Scholar
[14]Kuramoto, Y. (1978) Diffusion-induced chaos in reaction systems. Progr. Theoret. Phys. Suppl. 64, 346367.Google Scholar
[15]Kuramoto, Y. & Tsuzuki, T. (1975) On the formation of dissipative structures in reaction diffusion systems. Progr. Theoret. Phys. 54, 687699.Google Scholar
[16]Kuramoto, Y. & Tsuzuki, T. (1976) Persistent propagation of concentration waves in dissipative media far f rom thermal equilibrium. Progr. Theoret. Phys. 55, 356369.Google Scholar
[17]Manneville, P. (1985) Liapounov exponents for the Kuramoto-Sivashinsky equation. In: Frisch, U. & Keller, J. B. (editors), Macroscopic Modelling of Turbulent Flows, Lecture Notes in Physics No. 230, Springer-Verlag, Berlin-New York, pp. 319326.Google Scholar
[18]Papageorgiou, D. T., Maldarelli, C. & Rumschitzki, D. S. (1990) Nonlinear interfacial stability of cone-annular film flow. Phys. Fluids A2, 340352.CrossRefGoogle Scholar
[19]Shlang, T. & Sivashinsky, G. I. (1982) Irregular flow of a liquid film down a vertical column. J. de Physique 43, 459466.CrossRefGoogle Scholar
[20]Sivashinsky, G. I. (1977) Nonlinear analysis of hydrodynamic instability in laminar flames, part 1. Acta Astronaut. 4, 11761206.Google Scholar
[21]Sivashinsky, G. I. (1983) Instabilites, pattern formation, and turbulence in flames. Ann. Rev. Fluid Mech. 15, 179199.Google Scholar
[22]Sivashinsky, G. I. & Michelson, D. M. (1980) On irregular wavy flow of a liquid film down a vertical plane. Progr. Theoret. Phys. 63, 21122114.Google Scholar
[23]Tadmor, E. (1986) The well-posedness of the Kuramoto-Sivashinsky equation. SIAM J. Math. Anal. 17, 884893.Google Scholar
[24]Tilley, B. S., Davis, S. H. & Bankoff, S. G. (1994) Nonlinear long-wave stability of superposed fluids in an inclined chanel. J. Fluid Mech. 277, 5583.Google Scholar
[25]Tseluiko, D. & Papageorgiou, D. T. (2006) Wave evolution on electrified falling films. J. Fluid Mech. 556, 361386.Google Scholar