Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T18:10:48.021Z Has data issue: false hasContentIssue false

Analysis of the geodesic interpolating spline

Published online by Cambridge University Press:  01 October 2008

ANNA MILLS
Affiliation:
School of Mathematics, The University of Manchester, Manchester M60 1QD, UK
TONY SHARDLOW
Affiliation:
School of Mathematics, The University of Manchester, Manchester M60 1QD, UK

Abstract

We study the geodesic interpolating spline with a biharmonic regulariser for solving the landmark image registration problem. We show existence of solutions, discuss uniqueness and show how the problem can be efficiently solved numerically. The main advantage of the geodesic interpolating spline is that it provides a diffeomorphism and we show this is preserved under our numerical approximation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Allassonnire, S., Trouv, A. & Younes, L. (2005) Geodesic shooting and diffeomorphic matching via textured meshes. In: A. Rangarajan, B. C. Vemuri & A. L. Yuille (editors), Energy Minimization Methods in Computer Vision and Pattern Recognition, 5th International Workshop, EMMCVPR 2005, St. Augustine, FL, USA, November 9–11, volume 3757 of Lecture Notes in Computer Science, Springer, pp. 365 –381.CrossRefGoogle Scholar
[2]Boggio, T. (1905) Sulle funzioni di green d'ordine m. Rend. Circ. Matem. Palermo 20, 97135.CrossRefGoogle Scholar
[3]Bookstein, F. L. (1989) Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11 (6), 567585.CrossRefGoogle Scholar
[4]Camion, V. & Younes, L. (2001) Geodesic interpolating splines. In: Figueiredo, M. A. T., Zerubia, J. & Jain, A. K. (editors), Energy Minimization Methods in Computer Vision and Pattern Recognition, Lecture notes in Computer Science, Vol. 2134, Springer-Verlag, Berlin and Heidelberg, pp. 513527.Google Scholar
[5]Cheney, W. & Light, W. (1999) A Course in Approximation Theory, Brooks, Cole.Google Scholar
[6]doCarmo, M. P. Carmo, M. P. (1976) Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
[7]Dupuis, P., Grenander, U. & Miller, M. (1998) Variational problems on flows of diffeomorphism for image matching. Q. Appl. Math. LVI (3), 587600.CrossRefGoogle Scholar
[8]Garcin, L. & Younes, L. (2006) Geodesic matching with free extremities. J. Math. Imag. Vis. 25 (3), 329340.CrossRefGoogle Scholar
[9]Johnson, H. E. & Christensen, G. E. (2002) Consistent landmark and intensity based image registration. IEEE Trans. Med. Imag. 21 (5).CrossRefGoogle ScholarPubMed
[10]Joshi, S. & Miller, M.Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image Process. 9 (8), 13571370.CrossRefGoogle Scholar
[11]Keeling, S. L. & Ring, W. (2005) Medical image registration and interpolation by optical flow with maximal rigidity. J. Math. Imag. Vis. 23 (1), 4765.CrossRefGoogle Scholar
[12]Leimkuhler, B. & Reich, S. (2004) Simulating Hamiltonian Dynamics, Cambridge University Press, Cambridge.Google Scholar
[13]Marsland, S. & McLachlan, R. (2006) A Hamiltonian Particle Method for Diffeomorphic Image Registration, Massey University Preprint.Google Scholar
[14]McLachlan, R. I. & Marsland, S. (2007) Discrete mechanics and optimal control for image registration. In: Wayne Read & A. J. Roberts (editors), Proceedings of the 13th Biennial Computational Techniques and Applications Conference, CTAC-2006, volume 48 of ANZIAM J., April 2007, pp. C1–C16.CrossRefGoogle Scholar
[15]Mills, A. (2007) Image Registration Based on the Geodesic Interpolating Spline, Ph.D. Thesis, The University of Manchester.CrossRefGoogle Scholar
[16]Mills, A., Shardlow, T. & Marsland, S. (2006) Computing the geodesic interpolating spline. In: Biomedical Image Registration, Third International Workshop, WBIR 2006, volume 4057 of Lecture Notes in Computer Science, Springer, Berlin and Heidelberg, pp. 169177.Google Scholar
[17]Modersitzki, J. (2004) Numerical Methods for Image Registration, Oxford University Press, New York.Google Scholar
[18]Moré, J. J., Garbow, B. S. & Hillstrom, K. E. (1980) User guide for MINPACK–1. Technical Report ANL–80–74, Mathematics and Computer Sciences Division, Argonne National Laboratory, Argonne, Ill.Google Scholar
[19]Numerical Algorithms Group, http://www.nag.co.uk/. Accessed 14 April 2008.Google Scholar
[20]Renardy, M. & Rogers, R. C. (1996) An Introduction to Partial Differential Equations, Springer-Verlag, New York.Google Scholar
[21]Stuart, A. M. & Humphries, A. R. (1996) Dynamical Systems and Numerical Analysis, volume 2 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge.Google Scholar
[22]Trouvé, A. & Younes, L. (2005) Metamorphoses through Lie group action. Found. Comput. Math. 5 (2), 173198.CrossRefGoogle Scholar