Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T09:05:15.993Z Has data issue: false hasContentIssue false

Alternative results for option pricing and implied volatility in jump-diffusion models using Mellin transforms

Published online by Cambridge University Press:  06 December 2016

T. RAY LI
Affiliation:
School of Mathematics and Applied Statistics, University of Wollongong, New South Wales, Australia email: [email protected], [email protected]
MARIANITO R. RODRIGO
Affiliation:
School of Mathematics and Applied Statistics, University of Wollongong, New South Wales, Australia email: [email protected], [email protected]

Abstract

In this article, we use Mellin transforms to derive alternative results for option pricing and implied volatility estimation when the underlying asset price is governed by jump-diffusion dynamics. The current well known results are restrictive since the jump is assumed to follow a predetermined distribution (e.g., lognormal or double exponential). However, the results we present are general since we do not specify a particular jump-diffusion model within the derivations. In particular, we construct and derive an exact solution to the option pricing problem in a general jump-diffusion framework via Mellin transforms. This approach of Mellin transforms is further extended to derive a Dupire-like partial integro-differential equation, which ultimately yields an implied volatility estimator for assets subjected to instantaneous jumps in the price. Numerical simulations are provided to show the accuracy of the estimator.

Type
Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abramowitz, M. & Stegun, I. A. (1972) Handbook of Mathematical Functions with Formulas, Graphs and Mathematics Tables, Applied Mathematics Series, National Bureau of Standards.Google Scholar
[2] Anderson, L. & Andreasen, J. (2000) Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing. Rev. Derivatives Res. 4 (3), 231262.CrossRefGoogle Scholar
[3] Amin, K. I. (1993) Jump diffusion option valuation in discrete time. J. Finance 48 (5), 18331863.CrossRefGoogle Scholar
[4] Ball, C. A. & Torous, W. N. (1985) On jumps in common stock prices and their impact on call option pricing. J. Finance 40 (1), 155173.CrossRefGoogle Scholar
[5] Bharadia, M., Christofides, A. N. & Salkin, G. R. (1996) Computing the Black Scholes implied volatility. Adv. Futures Options Res. 8, 1529.Google Scholar
[6] Black, F. & Scholes, M. (1973) The pricing of options and corporate liabilities. J. Political Economy, 637654.CrossRefGoogle Scholar
[7] Bowling, S. R., Khasawneh, M. T., Kaewkuekool, S. & Cho, B. R. (2009) A logistic approximation to the cumulative normal distribution. J. Ind. Eng. Manage. 2 (1), 114127.Google Scholar
[8] Brenner, M. & Subrahmanyam, M. G. (1988) A simple formula to compute the implied standard deviation. Financ. Anal. J. 44 (5), 8083.CrossRefGoogle Scholar
[9] Bollerslev, T., Chou, R. Y. & Kroner, K. F. (1992) ARCH modelling in finance: A review of the theory and empirical evidence. J. Econometrics 52, 559.CrossRefGoogle Scholar
[10] Brown, S. & Dybvig, P. (1986) The empirical implications of the Cox, Ingersoll, Ross Theory of the term structure of interest rates. J. Finance 41 (3), 617630.CrossRefGoogle Scholar
[11] Carr, P. & Mayo, A. (2007) On the numerical evaluation of option prices in jump-diffusion processes. Eur. J. Finance 13 (4), 357372.CrossRefGoogle Scholar
[12] Chambers, D. R. & Nawalkha, S. K. (2001) An improved approach to computing implied volatility. Financ. Rev. 36 (3), 8999.CrossRefGoogle Scholar
[13] Chance, D. M. (1996) A generalized simple formula to compute the implied volatility. Financ. Rev. 31 (4), 859867.CrossRefGoogle Scholar
[14] Chargoy-Corona, J. & Ibarra-Valdez, C. (2006) A note on Black-Scholes implied volatility. Phys. A: Stat. Mech. Appl. 370 (2), 681688.CrossRefGoogle Scholar
[15] Cheang, G. H. L. & Chiarella, C. (2011) A modern view on Merton's jump-diffusion model, Research Paper No. 287, Quantitative Finance Research Centre.CrossRefGoogle Scholar
[16] Chen, S. X. & Xu, Z. (2014) On implied volatility for options–some reasons to smile and more to correct. J. Econometrics 179 (1), 115.CrossRefGoogle Scholar
[17] Choi, S., Dong, G. & Lai, K. K. (2011) Option implied volatility estimation: A computational intelligent approach. In: Proceedings of the 4th International Joint Conference on Computational Sciences and Optimization, pp. 545–547.CrossRefGoogle Scholar
[18] Cont., R. & da Fonseca, J. (2001) Deformation of implied volatility surfaces: An empirical analysis. Empir. Sci. Financ. Fluctuations 230–239.Google Scholar
[19] Cont., R. & da Fonseca, J. (2002) Dynamics of implied volatility surfaces. Quant. Finance 2 (1), 4560.CrossRefGoogle Scholar
[20] Cont, R. & Tankov, P. (2004) Financial Modelling with Jump Processes, Chapman & Hall/CRC.Google Scholar
[21] Corrado, C. J. & Miller, T. W. (1996) A note on a simple, accurate formula to compute implied standard deviations. J. Bank. Finance 20 (3), 595603.CrossRefGoogle Scholar
[22] Cox, J. C., Ross, S. A. & Rubinstein, M. (1979) Option pricing: A simplified approach. J. Financ. Econ. 7 (3), 229263.CrossRefGoogle Scholar
[23] Cox, J. C. & Rubinstein, M. (1985) Option Markets, 1st ed., Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
[24] Curtis, C. E. Jr. & Carriker, G. L. (1988) Estimating implied volatility directly from ‘nearest-to-the-money’ commodity option premiums. Working Paper No. 116875, Department of Agricultural and Applied Economics, Clemson University.Google Scholar
[25] Dumas, B., Fleming, J. & Whaley, R. E. (1998) Implied volatility functions: Empirical tests. J. Finance 8 (6), 20592106.CrossRefGoogle Scholar
[26] Dupire, B. (1994) Pricing with a smile. RISK 7 (1), 1820.Google Scholar
[27] Feinstein, S. (1988) A source of unbiased implied volatility. Working Paper No. 88-9, Federal Reserve Bank of Atlanta.Google Scholar
[28] Feng, L. & Linetsky, V. (2008) Pricing options in jump-diffusion models: An extrapolation approach. Oper. Res. 56 (2), 304325.CrossRefGoogle Scholar
[29] Frontczak, R. (2013) Pricing options in jump-diffusion models using Mellin transforms. J. Math. Finance 3 (3), 366373.CrossRefGoogle Scholar
[30] Gatheral, J. (2006) The Volatility Surface: A Practitioner's Guide, John Wiley & Sons, New York, NY.Google Scholar
[31] Gibson, M. S. (2001) Incorporating event risk into Value-at-Risk, Federal Reserve Board, Washington, DC.CrossRefGoogle Scholar
[32] Heynen, R. (1994) An empirical investigation of observed smile patterns. Rev. Future Markets 13 (2), 317353.Google Scholar
[33] Higham, D. J. (2004) An Introduction to Financial Option Valuation, Cambridge University Press.CrossRefGoogle Scholar
[34] Hilliard, J. & Schwartz, A. (2005) Pricing European options and American derivatives under a jump-diffusion process: A bivariate tree approach. J. Financ. Quant. Anal. 40 (3), 671691.CrossRefGoogle Scholar
[35] Jarrow, R. & Rosenfeld, E. (1984) Jump risks and the intertemporal capital asset pricing model. J. Bus. 57 (3), 337351.CrossRefGoogle Scholar
[36] Jeffrey, A. (1995) Handbook of Mathematical Formulas and Integrals, Academic Press.Google Scholar
[37] Kijima, M. (2002) Stochastic Processes with Applications to Finance, Chapman & Hall/CRC.CrossRefGoogle Scholar
[38] Kishan, H. (2007) Differential Calculus, Atlantic Publishers & Distributers.Google Scholar
[39] Kou, S. (2002) A jump-diffusion model for option pricing. Manage. Sci. 48 (8), 10861101.CrossRefGoogle Scholar
[40] Kou, S. & Wang, H. (2004) Option pricing under a double exponential jump-diffusion model. Manage. Sci. 50 (9), 11781192.CrossRefGoogle Scholar
[41] Kwok, Y.-K. (2008) Mathematical Models of Financial Derivatives, Springer Finance.Google Scholar
[42] Latané, H. A. & Rendleman, R. J. Jr. (1976) Standard deviations of stock price ratios implied in option prices. J. Finance 31 (2), 369381.CrossRefGoogle Scholar
[43] Li, S. (2005) A new formula for computing implied volatility. Appl. Math. Comput. 170 (1), 611625.Google Scholar
[44] Manaster, S. & Koehler, G. (1982) The calculation of implied variances from the Black-Scholes model: A note. J. Finance 37 (1), 227230.Google Scholar
[45] Merton, R. C. (1973) Theory of rational option pricing. Bell J. Econ. Manage. Sci. 4 (1), 141183.CrossRefGoogle Scholar
[46] Merton, R. C. (1973) The relationship between put and call option prices: Comment. J. Finance 28 (1), 183184.CrossRefGoogle Scholar
[47] Merton, R. C. (1976) Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3 (1–2), 125144.Google Scholar
[48] Myint-U, T. & Debnath, L. (1987) Partial Differential Equations for Scientists and Engineers, North Holland.Google Scholar
[49] Park, H. J., Lee, D. W. & Lee, J. W. (2011) Implied volatility surface estimation using transductive Gaussian fields regression. Key Eng. Mater. 467–469, 17811786.CrossRefGoogle Scholar
[50] Platen, E. & Bruti-Liberati, N. (2010) Numerical Solution of Stochastic Differential Equations with Jumps in Finance, Vol. 64, p. 14.CrossRefGoogle Scholar
[51] Rebonato, R. (1999) Volatility and Corerlation in the Pricing of Equity, FX, and Interest Rate Options, Wiley.Google Scholar
[52] Rodrigo, M. R. & Mamon, R. S. (2007) An application of Mellin transform techniques to a Black-Scholes equation problem. Analysis and Applications 5 (1), 5166.CrossRefGoogle Scholar
[53] Rodrigo, M. R. (2014) Approximate ordinary differential equations for the optimal exercise boundaries of American put and call options. Eur. J. Appl. Math. 25 (1), 2743.CrossRefGoogle Scholar
[54] Rogers, L. C. G. & Talay, D. (1997) Numerical Methods in Finance, Cambridge University Press.CrossRefGoogle Scholar
[55] Rosenfeld, E. (1980) Stochastic Processes of Common Stock Returns: An Empirical Examination, Dissertation, MIT.Google Scholar
[56] Stoll, H. R. (1969) The relationship between put and call prices. J. Finance 24 (5), 801824.CrossRefGoogle Scholar
[57] Vecer, J. (2011) Stochastic Finance: A Numeraire Approach, Chapman & Hall/CRC.CrossRefGoogle Scholar
[58] Wilmott, P., Howison, S. & Dewynne, J. (1995) The Mathematics of Financial Derivatives: A Student's Introduction, Cambridge University Press.CrossRefGoogle Scholar
[59] Zhang, N. & Man, K. L. (2014) Computing implied volatilities for exchange-traded options on dividend-paying stocks. In: Transactions on Engineering Technologies, Lecture Notes in Electrical Engineering, Vol. 275, pp. 111–123.CrossRefGoogle Scholar