Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T18:02:41.072Z Has data issue: false hasContentIssue false

About a cavitation model including bubbles in thin film lubrication: A first mathematical analysis

Published online by Cambridge University Press:  14 October 2019

ALFREDO JARAMILLO
Affiliation:
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, 13560-970 São Carlos, Brazil email: [email protected]
GUY BAYADA
Affiliation:
CNRS, INSA de Lyon, Institut Camille Jordan UMR 5208, Université de Lyon, F-69621 Villeurbanne, France emails: [email protected]; [email protected]
IONEL CIUPERCA
Affiliation:
CNRS, Institut Camille Jordan UMR 5208, Université de Lyon, F-69622 Villeurbanne, France email: [email protected]
MOHAMMED JAI
Affiliation:
CNRS, INSA de Lyon, Institut Camille Jordan UMR 5208, Université de Lyon, F-69621 Villeurbanne, France emails: [email protected]; [email protected]

Abstract

In lubrication problems, which concern thin film flow, cavitation has been considered as a fundamental element to correctly describe the characteristics of lubricated mechanisms. Here, the well-posedness of a cavitation model that can explain the interaction between viscous effects and micro-bubbles of gas is studied. This cavitation model consists of a coupled problem between the compressible Reynolds partial differential equation (PDE) (that describes the flow) and the Rayleigh–Plesset ordinary differential equation (that describes micro-bubbles evolution). A simplified form without bubbles convection is studied here. This coupled model seems never to be studied before from its mathematical aspects. Local times existence results are proved and stability theorems are obtained based on the continuity of the spectrum for bounded linear operators. Numerical results are presented to illustrate these theoretical results.

Type
Papers
Copyright
© Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dowson, D. & Taylor, C. (1979) Cavitation in bearings. Annu. Rev. Fluid Mech. 11, 3566.CrossRefGoogle Scholar
Braun, M. & Hannon, W. (2010) Cavitation formation and modelling for fluid film bearings: a review. J. Eng. Tribol. 224, 839863.Google Scholar
Cimatti, G. (1976) On a problem of the theory of lubrication governed by a variational inequality. Appl. Math. Opt. 3(2), 227242.CrossRefGoogle Scholar
Cimatti, G. (1980) A free boundary problem in the theory of lubrication. Int. J. Eng. Sci. 18(5), 703711.CrossRefGoogle Scholar
Kinderlehrer, D. & Stampacchia, G. (1980) An Introduction to Variational Inequalities and Their Applications, Chapter VII, SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA, pp. 223227.Google Scholar
Bayada, G. & Chambat, M. (1983) Analysis of a free boundary problem in partial lubrication. Quart. Appl. Math. 40(4), 369375.CrossRefGoogle Scholar
Bermúdez, A. & Durany, J. (1989) Numerical solution of cavitation problems in lubrication. Comput. Methods Appl. Mech. Eng. 75(1), 457466.CrossRefGoogle Scholar
Buscaglia, G. C., El Alaoui Talibi, M. & Jai, M. (2015) Mass-conserving cavitation model for dynamical lubrication problems. Part I: Mathematical analysis. Math. Comput. Simul. 118, 130145.CrossRefGoogle Scholar
Bayada, G., Martin, S. & Vázquez, C. (2006) About a generalized Buckley–Leverett equation and lubrication multifluid flow. Euro. J. Appl. Math. 17(5), 491524.CrossRefGoogle Scholar
Schnerr, G. H. & Sauer, J. (2001) Physical and numerical modeling of unsteady cavitation dynamics. In: Proceedings of the 4th International Conference on Multiphase Flow, ICMF-2001, New Orleans, USA.Google Scholar
Singhal, A. K., Li, H. Y., Athavale, M. M. & Jiang, Y. (2001) Mathematical basis and validation of the full cavitation model. J. Fluids Eng. 124(3), 617624.CrossRefGoogle Scholar
Zwart, P. J., Gerber, A. G. & Belarmi, T. (2004) A two-phase flow model for predicting cavitation dynamics. In: Proceedings of the 5th International Conference on Multiphase Flow, ICMF-2004, Yokohama, Japan.Google Scholar
Kawase, T. & Someya, T. (1985) Investigation into the oil film pressure distribution in dynamically loaded journal bearings. Trans. Japan Soc. Mech. Eng. Ser. C 51(470), 25622570.CrossRefGoogle Scholar
Natsumeda, S. & Someya, T. (1987) Paper iii(ii) negative pressures in statically and dynamically loaded journal bearings. In: Dowson, D., Taylor, C. M., Godet, M. and Berthe, D. (editors), Fluid Film Lubrication - Osborne Reynolds Centenary, volume 11 of Tribology Series, Elsevier, Amsterdam, The Netherlands, pp. 6572.Google Scholar
Kubota, A., Kato, H. & Yamaguchi, H. (1992) A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. J. Fluid Mech. 240, 5996.CrossRefGoogle Scholar
Gehannin, J., Arghir, M. & Bonneau, O. (2009) Evaluation of Rayleigh–Plesset equation based cavitation models for squeeze film dampers. J. Tribol. 131(2), 024501.CrossRefGoogle Scholar
Geike, T. & Popov, V. (2009) A bubble dynamics based approach to the simulation of cavitation in lubricated contacts. J. Tribol. 131(1), 011704.CrossRefGoogle Scholar
Geike, T. & Popov, V. (2009) Cavitation within the framework of reduced description of mixed lubrication. Tribol. Int. 42(1), 9398.CrossRefGoogle Scholar
Jaramillo, A. & Buscaglia, G. (2019) A stable numerical strategy for Reynolds–Rayleigh–Plesset coupling. Tribol. Int. 130, 191205.CrossRefGoogle Scholar
Jaramillo, A. (2019) New models and Numerical Methods in Hydrodynamic Lubrication. PhD thesis, Instituto de Ciências Matemáticas e de Computação, USP.Google Scholar
Snyder, T. A., Braun, M. J. & Pierson, K. C. (2016) Two-way coupled Reynolds and Rayleigh–Plesset equations for a fully transient, multiphysics cavitation model with pseudo-cavitation. Tribol. Int. 93, 429445.CrossRefGoogle Scholar
Brennen, C. E. (1995) Cavitation and Bubble Dynamics. Oxford University Press, New York, USA.Google Scholar
Assemien, A., Bayada, G. & Chambat, M. (1994) Inertial effects in the asymptotic behavior of a thin film flow. Asympt. Anal. 9(3), 177208.Google Scholar
Meng, F., Zhang, L. & Long, T. (2016) Effect of groove textures on the performances of gaseous bubble in the lubricant of journal bearing. J. Tribol. 139(3), 031701.CrossRefGoogle Scholar
Drew, D. & Passman, S. (1999) Theory of Multicomponent Fluids. Springer-Verlag, New York.CrossRefGoogle Scholar
Liuzzi, D. (2012) Two-Phase Cavitation Modelling. PhD thesis, University of Rome.Google Scholar
Schmidt, M., Reinke, P., Nobis, M. & Riedel, M. (2014) Three-dimensional simulation of cavitating flow in real journal bearing geometry. In: König, C., arayiannis, T. and Balabani, S. (editors), Proceedings of the 4th Micro and Nano Flows Conference (MNF2014), University College London, UK, 7–10 September 2014, pp. 710.Google Scholar
Liu, Y., Wang, L. & Zhu, Z. (2015) Numerical study on flow characteristics of rotor pumps including cavitation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 229(14), 26262638.CrossRefGoogle Scholar
Walters, M. J. (2015) An Investigation into the Effects of Viscoelasticity on Cavitation Bubble Dynamics with Applications to Biomedicine. PhD thesis, Cardiff University.Google Scholar
Zhao, Y., Wang, G. & Huang, B. (2016) A cavitation model for computations of unsteady cavitating flows. Acta Mechanica Sinica 32(2), 273283.CrossRefGoogle Scholar
Dhande, D. Y. & Pande, D. W. (2016) Multiphase flow analysis of hydrodynamic journal bearing using cfd coupled fluid structure interaction considering cavitation. J. King Saud Univ. Eng. Sci. 30(4), 345354Google Scholar
Hakl, R., Torres, P. J. & Zamora, M. (2012) Periodic solutions to singular second order differential equations: the repulsive case. Topol. Methods Nonlinear Anal. 39(2), 199220.Google Scholar
Ohnawa, M. & Suzuki, Y. (2016) Mathematical and numerical analysis of the Rayleigh–Plesset and the Keller equations. In Mathematical Fluid Dynamics, Present and Future, Springer, Japan, pp. 159180.CrossRefGoogle Scholar
Bensoussan, A., Lions, J. L. & Papanicolaou, G. (1978) Asymptotic Analysis for Periodic Structures, Chapter 1, North-Holland Publishing Company, Amsterdam, p. 38.Google Scholar
Lang, S. (1999) Fundamentals of Differential Geometry, Chapter I, Springer-Verlag, New York, pp. 1920.CrossRefGoogle Scholar
Dunford, N. & Schwartz, J. T. (1957) Linear Operators, Part I: General Theory, Chapter VII, Interscience Publishers, New York, USA, p. 585.Google Scholar
Benzoni-Gavage, S. (2010) Calcul différentiel et équations différentielles: cours et exercices corrigés. SIAM.Google Scholar
Gantmacher, F. R. (1959) Applications of the Theory of Matrices, Chapter V, Interscience Publishers, New York, USA, p. 230.Google Scholar
Braun, M., Pierson, K. & Snyder, T. (2017) Two-way coupled Reynolds, Rayleigh–Plesset–Scriven and energy equations for fully transient cavitation and heat transfer modeling. In: Proceedings of the 13th International Conference on Tribology, ROTRIB’16 Galati, Romania. IOP Conf. Ser.: Mater. Sci. Eng. 174 012030.Google Scholar
Carrica, P. M., Bonetto, F. J., Drew, D. A. & Lahey, R. T. (1998) The interaction of background ocean air bubbles with a surface ship. Int. J. Numer. Methods Fluids 28(4), 571600.3.0.CO;2-E>CrossRefGoogle Scholar
Carrica, P., Drew, D., Bonetto, F. & Lahey, R. (1999) A polydisperse model for bubbly two-phase flow around a surface ship. Int. J. Multphase Flow 25, 257305.CrossRefGoogle Scholar
Castro, A. & Carrica, P. (2013) Bubble size distribution prediction for large-scale ship flows: model evaluation and numerical issues. Int. J. Multiphase Flow 57, 131150.CrossRefGoogle Scholar
Castro, A., Li, J. & Carrica, P. (2016) A mechanistic model of bubble entrainment in turbulent free surface flows. Int. J. Multiphase Flow 86, 3555.CrossRefGoogle Scholar
Saadat, N. & Flint, W. (1996) Expressions for the viscosity of liquid/vapour mixtures: predicted and measured pressure distributions in a hydrostatic bearing. Proc. Inst. Mech. Eng. J. J. Eng. Tribol. 210(1), 7579.CrossRefGoogle Scholar
Cameron, A. (1971) Basic Lubrication Theory, Longman Publishing Group, London, England.Google Scholar
Bayada, G. & Chambat, M. (1986) The transition between the Stokes equations and the Reynolds equation: a mathematical proof. Appl. Math. Opt. 14(1), 7393.CrossRefGoogle Scholar
Yu, P.-W., Ceccio, S. & Tryggvason, G. (1995) The collapse of a cavitation bubble in shear flows–A numerical study. Phys. Fluids 7(11), 2608.CrossRefGoogle Scholar