Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-23T05:04:03.707Z Has data issue: false hasContentIssue false

Regional filling characteristics of the lungs in mechanically ventilated patients with acute lung injury

Published online by Cambridge University Press:  01 May 2007

J. Hinz*
Affiliation:
University of Göttingen, Emergency and Intensive Care Medicine, Department of Anaesthesiology, Göttingen, Kiel, Germany
A. Gehoff
Affiliation:
University of Göttingen, Emergency and Intensive Care Medicine, Department of Anaesthesiology, Göttingen, Kiel, Germany
O. Moerer
Affiliation:
University of Göttingen, Emergency and Intensive Care Medicine, Department of Anaesthesiology, Göttingen, Kiel, Germany
I. Frerichs
Affiliation:
University Hospital Schleswig-Holstein, Department of Anaesthesiology and Intensive Care Medicine, Campus Kiel, Kiel, Germany
G. Hahn
Affiliation:
University of Göttingen, Emergency and Intensive Care Medicine, Department of Anaesthesiology, Göttingen, Kiel, Germany
G. Hellige
Affiliation:
University of Göttingen, Emergency and Intensive Care Medicine, Department of Anaesthesiology, Göttingen, Kiel, Germany
M. Quintel
Affiliation:
University of Göttingen, Emergency and Intensive Care Medicine, Department of Anaesthesiology, Göttingen, Kiel, Germany
*
Correspondence to: José Hinz, Department of Anaesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany. E-mail: [email protected]; Tel: +49 5513 92995; Fax: +49 5513 98470
Get access

Summary

Objectives

The objective of the study was to determine regional pulmonary filling characteristics in 20 mechanically ventilated patients with acute lung injury.

Methods

Regional filling characteristics were calculated from tracings of regional tidal volumes vs. global tidal volumes measured by electrical impedance tomography (EIT). These plots were fitted to a polynomial function of the second degree. Regional polynomial coefficients of the second degree characterized the curve linearity of the plots. Near-zero values of the polynomial coefficient indicated a homogeneous increase in regional tidal volumes during the whole inspiration. Positive values hinted at initial low regional tidal volume change suggesting lung volume recruitment. Negative values indicated late low regional tidal volume change implying hyperinflation of this lung region.

Results

We found a broad heterogeneity of regional lung filling characteristics. The minimal regional polynomial coefficients varied from −2.80 to −0.56 (median −1.16), while the maximal regional polynomial coefficients varied from 0.58 to 3.65 (median 1.41).

Conclusions

Measurements of regional filling characteristics by EIT may be a helpful tool to adjust the respiratory settings during mechanical ventilation to optimize lung recruitment and to avoid overdistension. It applies a non-pressure-related assessment to the mechanics of lung inflation and gives a view of the real problems underlying ventilatory strategies dependent on global characteristics.

Type
Original Article
Copyright
Copyright © European Society of Anaesthesiology 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Dreyfuss, D, Saumon, G. Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 1998; 157: 294323.CrossRefGoogle ScholarPubMed
2.Ranieri, VM, Suter, PM, Tortorella, C et al. . Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 1999; 282: 5461.CrossRefGoogle ScholarPubMed
3.Slutsky, AS, Tremblay, LN. Multiple system organ failure: is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 1998; 157: 17211725.CrossRefGoogle ScholarPubMed
4.Plotz, FB, Vreugdenhil, HA, van Vught, AJ, Heijnen, CJ. Mechanical ventilation and multiple organ failure. Lancet 2003; 361: 1654.CrossRefGoogle ScholarPubMed
5.Plotz, FB, Slutsky, AS, van Vught, AJ, Heijnen, CJ. Ventilator-induced lung injury and multiple system organ failure: a critical review of facts and hypotheses. Intensive Care Med 2004; 30: 18651872.CrossRefGoogle Scholar
6.Gattinoni, L, Pesenti, A, Caspani, ML et al. . The role of total static lung compliance in the management of severe ARDS unresponsive to conventional treatment. Intensive Care Med 1984; 10: 121126.CrossRefGoogle ScholarPubMed
7.Amato, MB, Barbas, CS, Medeiros, DM et al. . Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998; 338: 347354.CrossRefGoogle ScholarPubMed
8.Gattinoni, L, Mascheroni, D, Basilico, E et al. . Volume/pressure curve of total respiratory system in paralysed patients: artefacts and correction factors. Intensive Care Med 1987; 13: 1925.CrossRefGoogle ScholarPubMed
9.Pelosi, P, Gattinoni, L. Respiratory mechanics in ARDS: a siren for physicians? Intensive Care Med 2000; 26: 653656.CrossRefGoogle ScholarPubMed
10.Puybasset, L, Gusman, P, Muller, JC et al. . Regional distribution of gas and tissue in acute respiratory distress syndrome III. Consequences for the effects of positive end-expiratory pressure. CT Scan ARDS Study Group. Adult Respiratory Distress Syndrome. Intensive Care Med 2000; 26: 12151227.CrossRefGoogle Scholar
11.Kunst, PW, Bohm, SH, de Vazquez, A et al. . Regional pressure volume curves by electrical impedance tomography in a model of acute lung injury. Crit Care Med 2000; 28: 178183.CrossRefGoogle Scholar
12.van Genderingen, HR, van Vught, AJ, Jansen, JR. Regional lung volume during high-frequency oscillatory ventilation by electrical impedance tomography. Crit Care Med 2004; 32: 787794.CrossRefGoogle ScholarPubMed
13.van Genderingen, HR, van Vught, AJ, Jansen, JR. Estimation of regional lung volume changes by electrical impedance pressures tomography during a pressure–volume maneuver. Intensive Care Med 2003; 29: 233240.CrossRefGoogle ScholarPubMed
14.Hinz, J, Moerer, O, Neumann, P et al. . Regional pulmonary pressure volume curves in mechanically ventilated patients with acute respiratory failure measured by electrical impedance tomography. Acta Anaesthesiol Scand 2006; 50: 331339.CrossRefGoogle ScholarPubMed
15.Rouby, JJ, Lu, Q, Goldstein, I. Selecting the right level of positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2002; 165: 11821186.CrossRefGoogle ScholarPubMed
16.Gattinoni, L, Pelosi, P, Crotti, S, Valenza, F. Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 1995; 151: 18071814.CrossRefGoogle ScholarPubMed
17.Gattinoni, L, Pesenti, A, Avalli, L et al. . Pressure–volume curve of total respiratory system in acute respiratory failure: computed tomographic scan study. Am Rev Respir Dis 1987; 136: 730736.CrossRefGoogle ScholarPubMed
18.Pelosi, P, D’Andrea, L, Vitale, G et al. . Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med 1994; 149: 813.CrossRefGoogle ScholarPubMed
19.Mankikian, B, Lemaire, F, Benito, S et al. . A new device for measurement of pulmonary pressure-volume curves in patients on mechanical ventilation. Crit Care Med 1983; 11: 897901.CrossRefGoogle ScholarPubMed
20.Frerichs, I, Hinz, J, Herrmann, P et al. . Detection of local lung air content by electrical impedance tomography compared with electron beam CT. J Appl Physiol 2002; 93: 660666.CrossRefGoogle ScholarPubMed
21.Barber, DC, Brown, BH. Applied potential tomography. J Phys E Sci Instrum 1984; 17: 723733.CrossRefGoogle Scholar
22.Frerichs, I. Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities. Physiol Meas 2000; 21: R1R21.CrossRefGoogle ScholarPubMed
23.Hinz, J, Moerer, O, Neumann, P et al. . Effect of positive end-expiratory pressure on regional ventilation in patients with acute lung injury evaluated by electrical impedance tomography. Eur J Anaesthesiol 2005; 22: 817825.CrossRefGoogle ScholarPubMed
24.Ramsay, MA. Measuring level of sedation in the intensive care unit. JAMA 2000; 284: 441442.CrossRefGoogle ScholarPubMed
25.Murray, JF, Matthay, MA, Luce, JM, Flick, MR. An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis 1988; 138: 720723.CrossRefGoogle ScholarPubMed
26.Gottfried, SB, Rossi, A, Higgs, BD et al. . Noninvasive determination of respiratory system mechanics during mechanical ventilation for acute respiratory failure. Am Rev Respir Dis 1985; 131: 414420.Google ScholarPubMed
27.Hahn, G, Frerichs, I, Kleyer, M, Hellige, G. Local mechanics of the lung tissue determined by functional EIT. Physiol Meas 1996; 17 (Suppl 4A): A159A166.CrossRefGoogle ScholarPubMed
28.Faes, TJ, van der Meij, HA, de Munck, JC, Heethaar, RM. The electric resistivity of human tissues (100 Hz–10 MHz): a meta-analysis of review studies. Physiol Meas 1999; 20: R1R10.CrossRefGoogle ScholarPubMed
29.Frerichs, I, Dudykevych, T, Hinz, J et al. . Gravity effects on regional lung ventilation determined by functional EIT during parabolic flights. J Appl Physiol 2001; 91: 3950.CrossRefGoogle ScholarPubMed
30.Milic-Emili, J, Henderson, JA, Dolovich, MB et al. . Regional distribution of inspired gas in the lung. J Appl Physiol 1966; 21: 749759.CrossRefGoogle ScholarPubMed
31.Wolf, GK, Arnold, JH. Noninvasive assessment of lung volume: respiratory inductance plethysmography and electrical impedance tomography. Crit Care Med 2005; 33: S163S169.CrossRefGoogle ScholarPubMed
32.Hinz, J, Neumann, P, Dudykevych, T et al. . Regional ventilation by electrical impedance tomography: a comparison with ventilation scintigraphy in pigs. Chest 2003: 314322.CrossRefGoogle ScholarPubMed
33.Hinz, J, Hahn, G, Neumann, P et al. . End-expiratory lung impedance change enables bedside monitoring of end-expiratory lung volume change. Intensive Care Med 2003; 29: 3743.CrossRefGoogle ScholarPubMed
34.Hahn, G, Hartung, C, Hellige, G. 6.2. Experimentelle Validierung. In: Elektrische Impedanztomographie (EIT) als Methode zur regionalen Beurteilung der Lungenventilation. Mainz: Gustav Fischer Verlag, 1998: 5777.Google Scholar
35.Hahn, G, Hartung, C, Hellige, G. 6.2.5 Bestimmung der Grösse minimal erfassbarer Areale mit Ventilationsstörungen. In: Elektrische Impedanztomographie (EIT) als Methode zur regionalen Beurteilung der Lungenventilation. Mainz: Gustav Fischer Verlag, 1998: 77.Google Scholar
36.Brown, BH, Barber, DC. Electrical impedance tomography: the construction and application to physiological measurement of electrical impedance images. Med Prog Technol 1987; 13: 6975.Google ScholarPubMed
37.Wtorek, J, Polinski, A. The contribution of blood-flow-induced conductivity changes to measured impedance. IEEE Trans Biomed Eng 2005; 52: 4149.CrossRefGoogle ScholarPubMed
38.Hahn, G, Thiel, F, Dudykevych, T et al. . Quantitative evaluation of the performance of different electrical tomography devices. Biomed Tech (Berl) 2001; 4: 9195.CrossRefGoogle Scholar
39.Adler, A, Guardo, R, Berthiaume, Y. Impedance imaging of lung ventilation: do we need to account for chest expansion? IEEE Trans Biomed Eng 1996; 43: 414420.CrossRefGoogle ScholarPubMed
40.Wrigge, H, Zinserling, J, Neumann, P et al. . Spontaneous breathing improves lung aeration in oleic acid-induced lung injury. Anesthesiology 2003; 99: 376384.CrossRefGoogle ScholarPubMed
41.van Beek, EJ, Wild, JM, Kauczor, HU et al. . Functional MRI of the lung using hyperpolarized 3-helium gas. J Magn Reson Imaging 2004; 20: 540554.CrossRefGoogle ScholarPubMed