Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-29T07:14:46.310Z Has data issue: false hasContentIssue false

Optimal ventilator settings in acute lung injury and acute respiratory distress syndrome

Published online by Cambridge University Press:  01 February 2008

M. Yilmaz*
Affiliation:
Mayo Clinic College of Medicine, Division of Pulmonary and Critical Care Medicine, Rochester, MN, USA Akdeniz University, Medical Faculty, Department of Anaesthesiology and Intensive Care, Antalya, Turkey
O. Gajic
Affiliation:
Mayo Clinic College of Medicine, Division of Pulmonary and Critical Care Medicine, Rochester, MN, USA
*
Correspondence to: Murat Yilmaz, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA. E-mail: [email protected]; Tel: +1 507 255 6051; Fax: +1 507 255 4267
Get access

Summary

Despite recent advances in intensive care medicine, acute lung injury and its more severe form, acute respiratory distress syndrome pose major therapeutic problems. While mechanical ventilation is integral to the care of these patients, its adverse consequences including ventilator-induced lung injury are determinants of disease progression and prognosis. Among several important ventilator parameters, the use of low tidal volumes is probably the most important feature of lung-protective mechanical ventilation. Intensivists should be trained to recognize acute lung injury and acute respiratory distress syndrome and encouraged to use low-tidal-volume ventilation in clinical practice. Alternative modes of ventilation such as high-frequency ventilation and prone position should be reserved for selected patients in whom conventional lung-protective ventilation strategies have failed.

Type
Review
Copyright
Copyright © European Society of Anaesthesiology 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Rubenfeld, GD, Caldwell, E, Peabody, E et al. . Incidence and outcomes of acute lung injury. N Engl J Med 2005; 353: 16851693.CrossRefGoogle ScholarPubMed
2.Bernard, GR, Artigas, A, Brigham, KL et al. . The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994; 149: 818824.CrossRefGoogle ScholarPubMed
3.Ware, LB, Matthay, MA. The acute respiratory distress syndrome. N Engl J Med 2000; 342: 13341349.CrossRefGoogle ScholarPubMed
4.Ashbaugh, DG, Bigelow, DB, Petty, TL, Levine, BE. Acute respiratory distress in adults. Lancet 1967; 2: 319323.CrossRefGoogle ScholarPubMed
5.Hickling, KG, Walsh, J, Henderson, S, Jackson, R. Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 1994; 22: 15681578.CrossRefGoogle ScholarPubMed
6.Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network. N Engl J Med 2000; 342: 13011308.Google Scholar
7.Amato, MB, Barbas, CS, Medeiros, DM et al. . Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998; 338: 347354.CrossRefGoogle ScholarPubMed
8.Dreyfuss, D, Basset, G, Soler, P, Saumon, G. Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 1985; 132: 880884.Google ScholarPubMed
9.Webb, HH, Tierney, DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 1974; 110: 556565.Google ScholarPubMed
10.Gajic, O, Lee, J, Doerr, CH et al. . Ventilator-induced cell wounding and repair in the intact lung. Am J Respir Crit Care Med 2003; 167: 10571063.CrossRefGoogle ScholarPubMed
11.Dreyfuss, D, Soler, P, Basset, G, Saumon, G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 1988; 137: 11591164.CrossRefGoogle ScholarPubMed
12.Muscedere, JG, Mullen, JB, Gan, K, Slutsky, AS. Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 1994; 149: 13271334.CrossRefGoogle ScholarPubMed
13.Guery, BP, DeBoisblanc, BP, Fialdes, P et al. . Pulmonary stress injury within physiological ranges of airway and vascular pressures. J Crit Care 1998; 13: 5866.CrossRefGoogle ScholarPubMed
14.Broccard, A, Shapiro, RS, Schmitz, LL et al. . Prone positioning attenuates and redistributes ventilator-induced lung injury in dogs. Crit Care Med 2000; 28: 295303.CrossRefGoogle ScholarPubMed
15.JrHotchkiss, JR, Blanch, L, Murias, G et al. . Effects of decreased respiratory frequency on ventilator-induced lung injury. Am J Respir Crit Care Med 2000; 161: 463468.CrossRefGoogle ScholarPubMed
16.Fujita, Y, Fujino, Y, Uchiyama, A et al. . High peak inspiratory flow can aggravate ventilator-induced lung injury in rabbits. Med Sci Monit 2007; 13: BR95BR100.Google ScholarPubMed
17.Sinclair, SE, Kregenow, DA, Lamm, WJ et al. . Hypercapnic acidosis is protective in an in vivo model of ventilator-induced lung injury. Am J Respir Crit Care Med 2002; 166: 403408.CrossRefGoogle Scholar
18.Suzuki, S, Hotchkiss, JR, Takahashi, T et al. . Effect of core body temperature on ventilator-induced lung injury. Crit Care Med 2004; 32: 144149.CrossRefGoogle ScholarPubMed
19.JrHotchkiss, JR, Blanch, L, Naveira, A et al. . Relative roles of vascular and airspace pressures in ventilator-induced lung injury. Crit Care Med 2001; 29: 15931598.CrossRefGoogle ScholarPubMed
20.Dreyfuss, D, Saumon, G. Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 1998; 157: 294323.CrossRefGoogle ScholarPubMed
21.Broccard, AF, Hotchkiss, JR, Vannay, C et al. . Protective effects of hypercapnic acidosis on ventilator-induced lung injury. Am J Respir Crit Care Med 2001; 164: 802806.CrossRefGoogle ScholarPubMed
22.Tremblay, L, Valenza, F, Ribeiro, SP et al. . Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 1997; 99: 944952.CrossRefGoogle Scholar
23.Slutsky, AS, Tremblay, LN. Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 1998; 157: 17211725.CrossRefGoogle ScholarPubMed
24.Ricard, JD, Dreyfuss, D, Saumon, G. Production of inflammatory cytokines in ventilator-induced lung injury: a reappraisal. Am J Respir Crit Care Med 2001; 163: 11761180.CrossRefGoogle ScholarPubMed
25.Ranieri, VM, Suter, PM, Tortorella, C et al. . Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 1999; 282: 5461.CrossRefGoogle ScholarPubMed
26.Bendixen, HH, Hedley-Whyte, J, Laver, MB. Impaired oxygenation in surgical patients during general anesthesia with controlled ventilation. A concept of atelectasis. N Engl J Med 1963; 269: 991996.CrossRefGoogle ScholarPubMed
27.Schultz, MJ, Haitsma, JJ, Slutsky, AS, Gajic, O. What tidal volumes should be used in patients without acute lung injury? Anesthesiology 2007; 106: 12261231.CrossRefGoogle ScholarPubMed
28.Villar, J, Kacmarek, RM, Perez-Mendez, L, Aguirre-Jaime, A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med 2006; 34: 13111318.CrossRefGoogle ScholarPubMed
29.Brochard, L, RoudotThoraval, F, Roupie, E et al. . Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med 1998; 158: 18311838.CrossRefGoogle Scholar
30.Stewart, TE, Meade, MO, Cook, DJ et al. . Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressure- and Volume-Limited Ventilation Strategy Group. N Engl J Med 1998; 338: 355361.CrossRefGoogle ScholarPubMed
31.Brower, RG, Shanholtz, CB, Fessler, HE et al. . Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med 1999; 27: 14921498.CrossRefGoogle ScholarPubMed
32.Wheeler, AP, Bernard, GR. Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet 2007; 369: 15531564.CrossRefGoogle ScholarPubMed
33.Gattinoni, L, Pesenti, A. The concept of “baby lung”. Intensive Care Med 2005; 31: 776784.CrossRefGoogle ScholarPubMed
34.Gajic, O, Dara, SI, Mendez, JL et al. . Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med 2004; 32: 18171824.CrossRefGoogle ScholarPubMed
35.Moran, JL, Bersten, AD, Solomon, PJ. Meta-analysis of controlled trials of ventilator therapy in acute lung injury and acute respiratory distress syndrome: an alternative perspective. Intensive Care Med 2005; 31: 227235.CrossRefGoogle ScholarPubMed
36.Sakr, Y, Vincent, JL, Reinhart, K et al. . High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest 2005; 128: 30983108.CrossRefGoogle ScholarPubMed
37.Ferguson, ND, Frutos-Vivar, F, Esteban, A et al. . Acute respiratory distress syndrome: underrecognition by clinicians and diagnostic accuracy of three clinical definitions. Crit Care Med 2005; 33: 22282234.CrossRefGoogle ScholarPubMed
38.Hickling, KG, Henderson, SJ, Jackson, R. Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 1990; 16: 372377.CrossRefGoogle ScholarPubMed
39.Lowe, GJ, Ferguson, ND. Lung-protective ventilation in neurosurgical patients. Curr Opin Crit Care 2006; 12: 37.CrossRefGoogle ScholarPubMed
40.Kregenow, DA, Rubenfeld, GD, Hudson, LD, Swenson, ER. Hypercapnic acidosis and mortality in acute lung injury. Crit Care Med 2006; 34: 17.CrossRefGoogle ScholarPubMed
41.Cheng, IW, Eisner, MD, Thompson, BT et al. . Acute effects of tidal volume strategy on hemodynamics, fluid balance, and sedation in acute lung injury. Crit Care Med 2005; 33: 6370.CrossRefGoogle ScholarPubMed
42.Hess, DR, Thompson, BT. Patient–ventilator dyssynchrony during lung protective ventilation: what’s a clinician to do? Crit Care Med 2006; 34: 231233.CrossRefGoogle ScholarPubMed
43.Belda, TE, Gajic, O, Rabatin, JT, Harrison, BA. Practice variability in management of acute respiratory distress syndrome: bringing evidence and clinician education to the bedside using a web-based teaching tool. Respir Care 2004; 49: 10151021.Google Scholar
44.Gattinoni, L, D’Andrea, L, Pelosi, P et al. . Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome. JAMA 1993; 269: 21222127.CrossRefGoogle ScholarPubMed
45.Tusman, G, Bohm, SH, Sipmann, FS, Maisch, S. Lung recruitment improves the efficiency of ventilation and gas exchange during one-lung ventilation anesthesia. Anesth Analg 2004; 98: 16041609.CrossRefGoogle ScholarPubMed
46.Brower, RG, Morris, A, MacIntyre, N et al. . Effects of recruitment maneuvers in patients with acute lung injury and acute respiratory distress syndrome ventilated with high positive end-expiratory pressure. Crit Care Med 2003; 31: 25922597.Google ScholarPubMed
47.Brower, RG, Lanken, PN, MacIntyre, N et al. . Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 2004; 351: 327336.Google ScholarPubMed
48.Kallet, RH, Campbell, AR, Dicker, RA et al. . Work of breathing during lung-protective ventilation in patients with acute lung injury and acute respiratory distress syndrome: a comparison between volume and pressure-regulated breathing modes. Respir Care 2005; 50: 16231631.Google ScholarPubMed
49.Mercat, A, Diehl, JL, Michard, F et al. . Extending inspiratory time in acute respiratory distress syndrome. Crit Care Med 2001; 29: 4044.CrossRefGoogle ScholarPubMed
50.Putensen, C, Zech, S, Wrigge, H et al. . Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 2001; 164: 4349.CrossRefGoogle ScholarPubMed
51.Imai, Y, Nakagawa, S, Ito, Y et al. . Comparison of lung protection strategies using conventional and high-frequency oscillatory ventilation. J Appl Physiol 2001; 91: 18361844.CrossRefGoogle ScholarPubMed
52.Derdak, S, Mehta, S, Stewart, TE et al. . High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am J Respir Crit Care Med 2002; 166: 801808.CrossRefGoogle ScholarPubMed
53.Bollen, CW, van Well, GT, Sherry, T et al. . High frequency oscillatory ventilation compared with conventional mechanical ventilation in adult respiratory distress syndrome: a randomized controlled trial [ISRCTN24242669]. Crit Care 2005; 9: R430R439.CrossRefGoogle ScholarPubMed
54.Finkielman, JD, Gajic, O, Farmer, JC et al. . The initial Mayo Clinic experience using high-frequency oscillatory ventilation for adult patients: a retrospective study. BMC Emerg Med 2006; 6: 2.CrossRefGoogle Scholar
55.Mehta, S, Lapinsky, SE, Hallett, DC et al. . Prospective trial of high-frequency oscillation in adults with acute respiratory distress syndrome. Crit Care Med 2001; 29: 13601369.CrossRefGoogle ScholarPubMed
56.Gattinoni, L, Tognoni, G, Pesenti, A et al. . Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 2001; 345: 568573.CrossRefGoogle ScholarPubMed
57.Guerin, C, Gaillard, S, Lemasson, S et al. . Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA 2004; 292: 23792387.CrossRefGoogle ScholarPubMed
58.Zapol, WM, Snider, MT, Hill, JD et al. . Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study. JAMA 1979; 242: 21932196.CrossRefGoogle ScholarPubMed
59.Michaels, AJ, Schriener, RJ, Kolla, S et al. . Extracorporeal life support in pulmonary failure after trauma. J Trauma 1999; 46: 638645.CrossRefGoogle ScholarPubMed
60.Hilbert, G, Gruson, D, Vargas, F et al. . Noninvasive ventilation in immunosuppressed patients with pulmonary infiltrates, fever, and acute respiratory failure. N Engl J Med 2001; 344: 481487.CrossRefGoogle ScholarPubMed
61.Rana S, JH, Tolentino, MM, Gajic, O. Risk factors for failure of non-invasive ventilation in patients with acute lung injury. Chest 2005; 128: 226S.CrossRefGoogle Scholar