Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T09:04:29.585Z Has data issue: false hasContentIssue false

Central nervous system inflammation

Published online by Cambridge University Press:  01 February 2008

S. G. Soriano*
Affiliation:
Harvard Medical School, Children’s Hospital Boston, Perioperative and Pain Medicine, Boston, MA, USA
S. Piva
Affiliation:
University of Brescia, Department of Anesthesia, Brescia, Italy
*
Correspondence to: Sulpicio G. Soriano, Perioperative and Pain Medicine, Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA. E-mail: [email protected]; Tel: +1 617 355 6457; Fax: +1 617 730 0894
Get access

Summary

Activation of inflammation is the hallmark of pathological processes that follow acute injury. This process is mediated by inflammatory cytokines and adhesion molecules that reside on the surface of endothelium, leucocyte and inflammatory cells. Attenuation of the adhesion cascade has been the subject of several basic science and clinical trials in the management of neurological injury. This review will highlight the role of adhesion molecules in the evolution of secondary injury after cerebral ischaemia and trauma. Potential therapeutic avenues will then be discussed.

Type
Original Article
Copyright
Copyright © European Society of Anaesthesiology 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Galea, I, Bechmann, I, Perry, VH. What is immune privilege (not)? Trends Immunol 2007; 28: 1218.CrossRefGoogle ScholarPubMed
2.Charo, IF, Ransohoff, RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 2006; 354: 610621.CrossRefGoogle ScholarPubMed
3.Zhang, RL, Chopp, M, Chen, H, Garcia, JH. Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion. J Neurol Sci 1994; 125: 310.CrossRefGoogle ScholarPubMed
4.Arvin, B, Neville, LF, Barone, FC, Feuerstein, GZ. The role of inflammation and cytokines in brain injury. Neurosci Biobehav Rev 1996; 20: 445452.CrossRefGoogle Scholar
5.Arnaout, MA. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood 1990; 75: 10371050.CrossRefGoogle ScholarPubMed
6.Diamond, MS, Staunton, DE, Marlin, SD, Springer, TA. Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 1991; 65: 961971.CrossRefGoogle Scholar
7.Witthaut, R, Farhood, A, Smith, CW, Jaeschke, H. Complement and tumor necrosis factor-alpha contribute to Mac-1 (CD11b/CD18) up-regulation and systemic neutrophil activation during endotoxemia in vivo. J Leukocyte Biol 1994; 55: 105111.CrossRefGoogle ScholarPubMed
8.Butini, L, De Fougerolles, AR, Vaccarezza, M et al. . Intercellular adhesion molecules (ICAM)-1, ICAM-2 and ICAM-3 function as counter-receptors for lymphocyte function-associated molecule 1 in human immunodeficiency virus-mediated syncytia formation. Eur J Immunol 1994; 24: 21912195.CrossRefGoogle ScholarPubMed
9.Mabuchi, T, Kitagawa, K, Ohtsuki, T et al. . Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke 2000; 31: 17351743.CrossRefGoogle ScholarPubMed
10.Soriano, SG, Lipton, SA, Wang, YF et al. . Intercellular adhesion molecule-1 (ICAM-1) deficient mice are less susceptible to cerebral ischemia–reperfusion injury. Ann Neurol 1996; 39: 295301.CrossRefGoogle ScholarPubMed
11.Soriano, SG, Coxon, A, Wang, YF et al. . Mice deficient in Mac-1 (CD11b/CD18) are less susceptible to cerebral ischemia/reperfusion injury. Stroke 1999; 30: 134139.CrossRefGoogle ScholarPubMed
12.Connolly, ESJ, Winfree, CJ, Springer, TA et al. . Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion. Role of neutrophil adhesion in the pathogenesis of stroke. J Clin Invest 1996; 97: 209216.CrossRefGoogle ScholarPubMed
13.Wright, SD, Weitz, JI, Huang, AJ, Levin, SM, Siverstein, SC. Complement receptor type three (CD11b/CD18) of human polymorphonuclear leukocytes recognizes fibrinogen. Proc Natl Acad Sci USA 1988; 85: 77347738.CrossRefGoogle ScholarPubMed
14.Diamond, MS, Alon, R, Parkos, CA, Quinn, MT, Springer, TA. Heparin is an adhesive ligand for the leukocyte integrin Mac-1 (CD11b/CD1). J Cell Biol 1995; 130: 14731482.CrossRefGoogle ScholarPubMed
15.Lu, H, Smith, CW, Perrard, J et al. . LFA-1 is sufficient in mediating neutrophil emigration in Mac-1-deficient mice. J Clin Invest 1997; 99: 13401350.CrossRefGoogle ScholarPubMed
16.Fong, AM, Robinson, LA, Steeber, DA et al. . Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. J Exp Med 1998; 188: 14131419.CrossRefGoogle ScholarPubMed
17.Chapman, GA, Moores, K, Harrison, D, Campbell, CA, Stewart, BR, Strijbos, PJ. Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage. J Neurosci (Online) 2000; 20: RC87.CrossRefGoogle ScholarPubMed
18.Harrison, JK, Jiang, Y, Chen, S et al. et al. . Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci USA 1998; 95: 1089610901.CrossRefGoogle ScholarPubMed
19.Chen, H, Chopp, M, Schultz, L, Bodzin, G, Garcia, JH. Sequential neuronal and astrocytic changes after transient middle cerebral artery occlusion in the rat. J Neurol Sci 1993; 118: 106109.CrossRefGoogle ScholarPubMed
20.Moore, S, Thanos, S. The concept of microglia in relation to central nervous system disease and regeneration. Prog Neurobiol 1996; 48: 441460.CrossRefGoogle ScholarPubMed
21.Reid, DM, Perry, VH, Andersson, PB, Gordon, S. Mitosis and apoptosis of microglia in vivo induced by an anti-CR3 antibody which crosses the blood-brain barrier. Neuroscience 1993; 56: 529533.CrossRefGoogle ScholarPubMed
22.Shrikant, P, Lee, SJ, Kalvakolanu, I, Ransohoff, RM, Benveniste, EN. Stimulus-specific inhibition of intercellular adhesion molecule-1 gene expression by TGF-b. J Immunol 1996; 157: 892900.CrossRefGoogle Scholar
23.Nishiyori, A, Minami, M, Ohtani, Y et al. . Localization of fractalkine and CX3CR1 mRNAs in rat brain: does fractalkine play a role in signaling from neuron to microglia? FEBS Lett 1998; 429: 167172.CrossRefGoogle ScholarPubMed
24.Jung, S, Aliberti, J, Graemmel, P et al. . Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 2000; 20: 41064114.CrossRefGoogle ScholarPubMed
25.Enlimomab Acute Stroke Trial Investigators. Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial. Neurology 2001; 57: 14281434.CrossRefGoogle Scholar
26.Becker, KJ. Anti-leukocyte antibodies: LeukArrest (Hu23F2G) and Enlimomab (R6.5) in acute stroke. Curr Med Res Opin 2002; 18 (Suppl. 2): s18s22.CrossRefGoogle Scholar
27.Furuya, K, Takeda, H, Azhar, S et al. . Examination of several potential mechanisms for the negative outcome in a clinical stroke trial of enlimomab, a murine anti-human intercellular adhesion molecule-1 antibody: a bedside-to-bench study. Stroke 2001; 32: 26652674.CrossRefGoogle Scholar
28.Nishimaki, H, Fukuda, S, Ishimoto, M et al. . Isoflurane ameliorates the posthypoxic deoxygenation of the rat brain – the role of cell adhesion molecules of polymorphonuclear leukocytes. Resuscitation 2002; 54: 207214.CrossRefGoogle ScholarPubMed
29.Mobert, J, Zahler, S, Becker, BF, Conzen, PF. Inhibition of neutrophil activation by volatile anesthetics decreases adhesion to cultured human endothelial cells. Anesthesiology 1999; 90: 13721381.CrossRefGoogle ScholarPubMed
30.de Rossi, LW, Horn, NA, Buhre, W, Gass, F, Hutschenreuter, G, Rossaint, R. The effect of isoflurane on neutrophil selectin and beta(2)-integrin activation in vitro. Anesth Analg 2002; 95: 583587 (Table).Google ScholarPubMed
31.Sakai, H, Sheng, H, Yates, RB, Ishida, K, Pearlstein, RD, Warner, DS. Isoflurane provides long-term protection against focal cerebral ischemia in the rat. Anesthesiology 2007; 106: 9299.CrossRefGoogle ScholarPubMed