Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-20T01:15:45.930Z Has data issue: false hasContentIssue false

Up–conversion detectors at 1550 nm for quantum communication: review and recent advances

Published online by Cambridge University Press:  11 June 2009

M. Tournier*
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS UMR 6622, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
O. Alibart
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS UMR 6622, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
F. Doutre
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS UMR 6622, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France Now at: XLIM, CNRS UMR 6172, Université de Limoges, 87060 Limoges, France
S. Tascu
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS UMR 6622, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France Now at: Solid State Physics Group, Faculty of Physics, University of Iasi, 700506 Iasi, Romania
M.P. De Micheli
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS UMR 6622, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
D.B. Ostrowsky
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS UMR 6622, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
K. Thyagarajan
Affiliation:
Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India.
S. Tanzilli
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS UMR 6622, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
Get access

Abstract

Up-conversion, or hybrid, detectors have been investigated in quantum communication experiments to replace Indium-Gallium-Arsenide avalanche photodiodes (InGaAs-APD) for the detection of infrared and telecom single photons. Those detectors are based on the supposedly noise-free process of frequency up-conversion, also called sum-frequency generation (SFG), using a second order (χ2) non-linear crystal. Powered by an intense pump laser, this process permits transposing with a certain probability the single photons at telecom wavelengths to the visible range where silicon APDs (Si-APD) operate with a much better performance than InGaAs detectors. To date, the literature reports up-conversion detectors having efficiency and noise figures comparable to that of the best commercially available IngaAs-APDs. However, in all of these previous realizations, a pump-induced noise is always observed which was initially expected to be as low as the dark count level of the Si-APDs. Although this additional noise represents a problem for the detection, up-conversion detectors have advantageously replaced InGaAs-APDs in various long-distance quantum cryptography schemes since they offer a continuous regime operation mode instead of a gated mode necessary for InGaAs-APDs, and the possibility of much higher counting rates. Despite attempted explanations, no detailed nor conclusive study of this noise has been reported.

The aim of this paper is to offer a definitive explanation for this noise.We first give a review of the state of the art by describing already demonstrated up-conversion detectors. We discuss these realizations especially regarding the choices made for the material, in bulk or guided configurations, the single photon wavelengths, and the pump scheme. Then we describe an original device made of waveguides integrated on periodically poled lithium niobate (PPLN)or on single-domain lithium niobate aimed at investigating the origin of the additional pump-induced noise. The poled waveguides are designed to up-convert single photons at 1550 nm to 600 nm when a 980 nm diode laser is used as pump. We obtain an overall efficiency of about 0.6% for a noise level of about 8 × 103 counts/s. This overall efficiency includes both insertion and propagation losses, and internal up-conversion and quantum detection (Si-APD) efficiencies. Despite a low efficiency value compared to what has been obtained so far by other groups, the efficiency/noise ratio is still comparable which still allows us investigating the noise issue.

From the spectrum obtained in both poled and non-poled waveguides we conclude that the noise comes from an alternative phase-matching scheme which permits creating paired photons at 1550 and 2700 nm wavelength by down-conversion of the 980 nm pump laser. Knowing that 1550 nm corresponds to the input signal wavelength, up-conversion of actual signal or pump-induced photons at this particular wavelength cannot be discriminated, therefore contributing to the noise at the final wavelength of 600 nm. We believe that this process of down-conversion of the pump laser to the signal wavelength (plus complementary wavelength) is responsible for the unexpected noise level reported in all the up-conversion detector realizations.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albota, M.A., & Wong, F.C., 2004, Opt. Lett., 29, 1449 CrossRef
Alibart, O., Ostrowsky, D.B., Baldi, P., & Tanzilli, S., 2005, Opt. Lett., 30, 1539 CrossRef
Anderson, D.B., & McMullen, J.D., 1969, IEEE. J. Quant. Electron., 5, 354 CrossRef
Armstrong, J.A., Bloembergen, N., Ducuing, J., & Pershan, P.S., 1962, Phys. Rev., 127, 1918 CrossRef
Bennett, C.H., & Brassard, G., 1984, Proc. IEEE, Int. Conf. on CSSP, Bangalore, India, Dec. 10-12, 175
Bloembergen, N., 1959, Phys. Rev. Lett., 2, 84 CrossRef
Castaldini, D., et al., 2007, Opt. Eng., 46, 1240601
Castaldini, D., et al., 2007, J. Light. Tech., 25, 1588 CrossRef
Chanvillard, L., et al., 2000, Appl. Phys. Lett., 76, 1089 CrossRef
Diamanti, E., et al., 2005, Phys. Rev. A, 72, 052311 CrossRef
Dong, H., et al., 2008, Appl. Phys. Lett., 93, 071101 CrossRef
Engel, A., et al., 2004, J. Mod. Opt., 51, 1459 CrossRef
Fasel, S., et al., 2004, N. J. Phys., 6, 163 CrossRef
Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H., 2002, J. Mod. Phys., 74, 145 CrossRef
Honjo, T., et al., 2008, Opt. Exp., 16, 19118 CrossRef
Landry, O., et al., 2007, J. Opt. Soc. Am. B, 24, 398 CrossRef
Langrock, C., et al., 2005, Opt. Lett., 30, 1725 CrossRef
Midwinter, J.E., & Warner, J., 1967, J. Appl. Phys., 38, 519 CrossRef
Moreau, E., et al., 2001, Appl. Phys. Lett., 79, 2865 CrossRef
Namekata, N., Makino, Y., & Inoue, S., 2002, Opt. Lett., 27, 954 CrossRef
Pan, H., & Zeng, H., 2006, Opt. Lett., 31, 793 CrossRef
Rastogi, V., et al., 1997, J. Opt. Soc. Am. B, 14, 3191 CrossRef
Rosfjord, K.M., et al., 2006, Opt. Exp., 14, 527 CrossRef
Roussev, R.V., Langrock, C., Kurz, J.R., & Fejer, M.M., 2004, Opt. Lett., 29, 1518 CrossRef
Tanzilli, S., et al., 2002, Eur. Phys. J. D, 18, 155
Tanzilli, S., et al., 2005, Nature, 437, 116 CrossRef
Temporão, G., et al., 2006, Opt. Lett., 31, 1094 CrossRef
Temporão, G., et al., 2008, Quant. Inf. Compt., 8, 0001
Thew, R.T., et al., 2006, N. J. Phys., 8, 32 CrossRef
Thew, R.T., et al., 2007, Appl. Phys. Lett., 91, 201114 CrossRef
Thew, R.T., Zbinden, H., & Gisin, N., 2008, Appl. Phys. Lett., 93, 071104 CrossRef
Thyagarajan, K., et al., 1996, Opt. Lett., 21, 1631 CrossRef
Ursin, R., et al., 2007, Nature Phys., 3, 481 CrossRef
Vandevender, A.P., & Kwiat, P.G., 2004, J. Mod. Opt., 51, 1433 CrossRef
Yang, T., et al., 2006, Phys. Rev. Lett., 96, 110501 CrossRef