Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T05:19:12.283Z Has data issue: false hasContentIssue false

Transport and influence of angular momentum in collapsing dense cores

Published online by Cambridge University Press:  27 September 2013

P. Hennebelle*
Affiliation:
Laboratoire AIM, Paris-Saclay, CEA/IRFU/SAp - CNRS, Université Paris Diderot, 91191 Gif-sur-Yvette Cedex, France LERMA (UMR CNRS 8112), École Normale Supérieure, 75231 Paris Cedex, France
Get access

Abstract

Angular momentum is playing a key role during the collapse of prestellar cores since it is leading to disk formation and to some extent to binary formation. On the other hand, it has long been recognized that the stars possess a tiny fraction of the initial momentum that their parent clouds retain, an issue known as the “angular momentum problem”. In these lectures, we attempt to present the most recent calculations performed to investigate the angular momentum transport and the influence angular momentum has, during the collapse of prestellar cores. After a brief introduction of the star formation context and a broad description of the important features within collapsing cores, we discuss the so-called catastrophic braking. Indeed when magnetic field and rotation axis are aligned, the magnetic braking is so efficient that the formation of early disks is completely prevented. We then present the various studies which have attempted to explore the robustness of this efficient transport including influence of non-ideal MHD, misalignment between magnetic field and rotation axis and turbulence. While the role of the first, is not entirely clear; the two other effects diminish the efficacity of the magnetic braking making the issue less severe than in the pure ideal MHD aligned configuration. Finally, we discuss the fragmentation of low and high mass cores with particular emphasis on the impact of the magnetic field. In particular, we discuss the drastic stabilization that magnetic field has on low mass cores and the possible solution to this apparent conundrum. In the context of high mass stars, its influence is much more limited reducing the number of fragments by a factor of the order of two. However when both radiative feedback and magentic field are included, the fragmentation is very significantly reduced.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, A., Li, Z.-Y., & Shu, F., 2003, ApJ, 599, 363CrossRef
Bate, M., 2009, MNRAS, 392, 1363CrossRef
Bonnell, I., Vine, S., & Bate, M., 2004, MNRAS, 349, 735CrossRef
Bürzle, F., Clark, P., Stasyszyn, F., et al., 2011, MNRAS, 412, 171CrossRef
Commerçon, B., Hennebelle, P., Audit, E., Chabrier, G., & Teyssier, R., 2010, A&A, 510, L3
Commerçon, B., Hennebelle, P., & Henning, T., 2011, ApJ, 742, L9CrossRef
Crutcher, R.M., 1999, ApJ, 520, 706CrossRef
Dapp, W., & Basu, S., 2010, A&A, 521, 56
Dobbs, C., Bonnell, I., & Clark, P., 2005, MNRAS, 360, 2CrossRef
Duffin, D., & Pudritz, R., ApJ, 2009, 706, L46CrossRef
Duquennoy, A., & Mayor, M., 1991, 248, 485
Enoch, M.L., Corder, S., Dunham, M.M., & Duchêne, G., 2009, ApJ, 707, 103CrossRef
Falgarone, E., Troland, T.H., Crutcher, R.M., & Paubert, G., 2008, A&A, 487, 247
Fromang, S., Hennebelle, P., & Teyssier, R., 2006, A&A, 457, 371
Galli, D., Lizano, S., Shu, F.H., & Allen, A., 2006, ApJ, 647, 374CrossRef
Galli, D., & Shu, F.H., 1993, ApJ, 417, 243CrossRef
Gammie, C., 1996, ApJ, 462, 725CrossRef
Girichidis, P., Federrath, C., Banerjee, R., & Klessen, R., 2011, MNRAS, 413, 2741CrossRef
Goodwin, S., Kroupa, P., Goodman, A., & Burkert, A., 2007, prpl. conf, 133
Haisch, K.E. Jr., Lada, E.A., & Lada, C.J., 2001, ApJ, 553, L153CrossRef
Hennebelle, P., & Ciardi, A., 2009, A&A, 506, L29
Hennebelle, P., Commerçon, B., Joos, M., et al., 2011, A&A, 528, 72
Hennebelle, P., & Fromang, S., 2008, A&A, 477, 9
Hennebelle, P., & Teyssier, R., 2008, A&A, 477, 25
Hennebelle, P., & Falgarone, E., 2012, A&ARv, 20, 55
Hosking, J., & Whitworth, A., 2004, MNRAS, 347, 1001CrossRef
Inutsuka, S.-I., Machida, M., & Matsumoto, T., 2010, ApJ, 718, 58CrossRef
Inutsuka, S.-I., PTEP, 2012, 01A307
Joos, M., Hennebelle, P., & Ciardi, A., 2012, A&A, 543, 128
Joos, M., Hennebelle, P., Ciardi, A., & Fromang, S., 2013, A&A [arXiv1301.3004]
Jørgensen, J.K., Bourke, T.L., Myers, P.C., et al., 2007, ApJ, 659, 479
Jørgensen, J.K., van Dishoeck, E.F., Visser, R., et al., 2009, A&A, 507, 861PubMed
Krasnopolsky, R., Li, Z.-Y., Shang, H., & Zhao, B., 2012, ApJ, 757, 77CrossRef
Krumholz, M., Klein, R., & McKee, C., 2007, ApJ, 665, 478CrossRef
Kunz, M., & Mouschovias, T., 2009, ApJ, 693, 1895CrossRef
Lazarian, A., & Vishniac, E., 1999, ApJ, 517, 700CrossRef
Li, Z., & Shu, F.H., 1996, ApJ, 472, 211CrossRef
Li, Z.-Y., Krasnopolsky, R., & Shang, H., 2011, ApJ, 738, 180CrossRef
Li, Z.-Y., Krasnopolsky, R., & Shang, H., 2013, ApJ [arXiv1301.6545]
Machida, M.N., Inutsuka, S.-I., & Matsumoto, T., 2008, ApJ, 676, 1088
Machida, M.N., Inutsuka, S.-I., & Matsumoto, T., 2011, PASJ, 63, 555
Machida, M.N., Matsumoto, T., Hanawa, T., & Tomisaka, K., 2005, MNRAS, 362, 382CrossRef
MacLow, M.-M., & Klessen, R., 2004, RvMP, 76, 125
McKee, C., & Tan, J., 2003 ApJ, 585, 850CrossRef
McKee, C.M., & Ostriker, E., 2007, ARA&A, 45, 565CrossRef
Matsumoto, T., & Hanawa, K., 2003, ApJ, 595, 913CrossRef
Maury, A.J., André, P., Hennebelle, P., et al., 2010, A&A, 512, A40
Mellon, R.R., & Li, Z., 2008, ApJ, 681, 1356CrossRef
Mellon, R.R., & Li, Z., 2009, ApJ, 698, 922CrossRef
Mouschovias, T.C., 1985, A&A, 142, 41
Mouschovias, T.C., 1991, in NATO ASIC Proc. 342: The Physics of Star Formation and Early Stellar Evolution, ed. Lada, C.J. & Kylafis, N.D., 61
Mouschovias, T.C., & Paleologou, E.V., 1979, ApJ, 230, 204CrossRef
Mouschovias, T.C., & Spitzer, L. Jr., 1976, ApJ, 210, 326CrossRef
Myers, A., McKee, C., Cunningham, A., Klein, R., & Krumholz, M., 2012 [arXiv1211.3467]
Nakano, T., Nishi, R., & Umebayashi, T., 2002, ApJ, 573, 199CrossRef
Nishi, R., Nakano, T., & Umebayashi, T., 1991, ApJ, 368, 181
Offner, S., Klein, R., McKee, C., & Krumholz, M., 2009, ApJ, 703, 131CrossRef
Peters, T., Banerjee, R., Klessen, R., et al., 2011, ApJ, 729, 72CrossRef
Pinto, C., & Galli, D., 2008, A&A, 484, 1
Price, D.J., & Bate, M.R., 2007, MNRAS, 377, 77CrossRef
Santos-Lima, R., de Gouveia Dal Pino, E.M., & Lazarian, A., 2012, ApJ, 747, 21CrossRef
Seifried, D., Banerjee, R., Pudritz, R., & Klessen, R., 2012, MNRAS, 423, L40CrossRef
Shu, F., 1977, ApJ, 214, 488CrossRef
Shu, F.H., Adams, F.C., & Lizano, S., 1987, ARA&A, 25, 23CrossRef
Teyssier, R., 2002, A&A, 385, 337