Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-20T09:38:57.186Z Has data issue: false hasContentIssue false

Relativistic jets and Ccsmic ray acceleration

Published online by Cambridge University Press:  13 February 2013

A. Meli*
Affiliation:
IFPA, Department of Astrophysics and Geophysics, University of Liege, Belgium

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cosmic rays are accelerated in astrophysical plasmas which collide at supersonic speeds where shock waves are formed, and along with other instabilities, they compete for the dissipation and acceleration mechanisms. The diffusive acceleration mechanism plays a leading role in the explanation of very high energy cosmic rays observed. In this mechanism, particles are repeatedly gaining energy in multiple crossings of an astrophysical shock discontinuity, due to collisions with upstream and downstream magnetic scattering centers, resulting in a power-law spectrum extending up to very high energies. Relativistic jets and their shocks in Active Galactic Nuclei (AGN) is a prominent source for particle acceleration. Especially, relativistic single or multiple shocks have been theorized and observed along the jets of AGN and are claimed to be responsible for accelerating even the highest-energy cosmic rays observed. In this paper we will report and discuss the cosmic ray acceleration efficiency and properties of single or multiple shocks in the limit of relativistic plasmas in AGN jet environments.

Type
Research Article
Copyright
© The Author(s) 2013

References

Références

Achterberg, A., Gallant, Y.A., Kirk, J.G., & Guthmann, A., 2001, MNRAS, 328 , 393 CrossRef
Ampleford, D.J., Jennings, C.A., Lebedev, S.V., Hall, G.N., et al., 2008, APS, APR8HE013
Begelman, Mitchell, C., Fabian, Andrew, C., & Rees, Martin, J., 2008, MNRAS, L384 , 19B CrossRef
Lebedev, S.V., Ciardi, A., Ampleford, D.J., Bland, S.N., et al., 2005, PPCF, 47B , 465
Bell, A.R., 1978, MNRAS, 182 , 147 CrossRef
Blandford, R.D., & Znajek, R.L., 1977, MNRAS, 179 , 433 CrossRef
Kellermann, K.I., Kovalev, Y.Y., Lister, M.L., et al., 2007, Ap&SS, 311 , 231
Keppens, R., Meliani, Z., van der Holst, B., & Casse, F., 2008, A&A, 486 , 663
Marscher, A.P., Jorstad, S.G., D’Arcangelo, F.D., Smith, P.S., et al., 2008, Nature, 452 , 966 CrossRef
Rachen, J.P., & Biermann, P.L., 1993, A&A, 272 , 161
Meli, A., & Quenby, J.J., 2003b, APh, 19 , 649
Meli, A., Becker, J.K., & Quenby, J.J., 2008, A&A, 492 , 323
Meli, A., 2011, Adv. Space Res., 7 , 287
Meli, A., & Biermann, P.L., 2012, A&A, in press
Ginzburg, V.L., & Syrovatskii, S.I., 1963, SvA, 7 , 357
Ellison, & Double, 2004, Astropart. Phys., 22 , 323 CrossRef
Rudnick, L., Katz-Stone, D.M., & Anderson, M.C., 1994, ApJS, 90 , 955 CrossRef
Machalski, J., et al., 2007, A&A, 462 , 43
Niemiec, J., & Ostrowski, M., 2004, ApJ, 610 , 851 CrossRef
Stecker, F.W., Baring, M.G., & Summerlin, E.J., 2007, ApJ, 667 , L29 CrossRef