Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T12:31:31.814Z Has data issue: false hasContentIssue false

Physics of Eclipsing Binaries: Modelling in the new era of ultra-high precision photometry

Published online by Cambridge University Press:  25 February 2014

S. Bloemen
Affiliation:
Dept. of Astrophysics, IMAPP, Radboud University Nijmegen, PO Box 9010, 6500 GL, Nijmegen, The Netherlands Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
P. Degroote
Affiliation:
Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
K. Conroy
Affiliation:
Dept. of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
K.M. Hambleton
Affiliation:
Jeremiah Horrocks Institute, University of Central Lancashire, PR1 2HE, UK Dept. of Astrophysics and Planetary Science, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA
J.M. Giammarco
Affiliation:
Dept. of Astronomy and Physics, Eastern University, Saint Davids, Wayne, PA 19087, USA
H. Pablo
Affiliation:
Dépt. de Physique, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
A. Prša
Affiliation:
Dept. of Astrophysics and Planetary Science, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA
Get access

Abstract

Recent ultra-high precision observations of eclipsing binaries, especially data acquired by the Kepler satellite, have made accurate light curve modelling increasingly challenging but also more rewarding. In this contribution, we discuss low-amplitude signals in light curves that can now be used to derive physical information about eclipsing binaries but that were unaccessible before the Kepler era. A notable example is the detection of Doppler beaming, which leads to an increase in flux when a star moves towards the satellite and a decrease in flux when it moves away. Similarly, Rømer delays, or light travel time effects, also have to taken into account when modelling the supreme quality data that is now available. The detection of offsets between primary and secondary eclipse phases in binaries with extreme mass ratios, and the observation of Rømer delays in the signals of pulsators in binary stars, have allowed us to determine the orbits of several binaries without the need for spectroscopy. A third example of a small-scale effect that has to be taken into account when modelling specific binary systems, are lensing effects. A new binary light curve modelling code, PHOEBE 2.0, that takes all these effect into account is currently being developed.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auvergne, M., Bodin, P., Boisnard, L., et al., 2009, A&A, 506, 411
Barlow, B.N., Wade, R.A., Liss, & S.E., 2012, ApJ, 753, 101CrossRef
Bloemen, S., Marsh, T.R., Degroote, P., et al., 2012, MNRAS, 422, 2600CrossRef
Bloemen, S., Marsh, T.R., Østensen, R.H., et al., 2011, MNRAS, 410, 1787
Borucki, W.J., Koch, D., Basri, G., et al., 2010, Science, 327, 977CrossRef
Conroy, K.E., Prša, A., Stassun, K.G., et al., 2013, AJ, in press [arXiv:1306.0512]
Copperwheat, C.M., Marsh, T.R., Dhillon, V.S., et al., 2010, MNRAS, 402, 1824CrossRef
Dhillon, V.S., Marsh, T.R., Stevenson, M.J., et al., 2007, MNRAS, 378, 825CrossRef
Ehrenreich, D., Lagrange, A., Bouchy, F., et al., 2011, A&A, 525, A85
Faigler, S., & Mazeh, T., 2011, MNRAS, 415, 3921CrossRef
Faigler, S., Mazeh, T., Quinn, S.N., Latham, D.W., & Tal-Or, L., 2012, ApJ, 746, 185CrossRef
Faigler, S., Tal-Or, L., Mazeh, T., Latham, D.W., & Buchhave, L.A., 2013, ApJ, 771, 26CrossRef
Groot, P.J., 2012, ApJ, 745, 55CrossRef
Kaplan, D.L., 2010, ApJ, 717, L108CrossRef
Kaplan, D.L., Marsh, T.R., Walker, A.N., et al., 2013, ApJ, in press [arXiv:1311.6831]
Loeb, A., & Gaudi, B.S., 2003, ApJ, 588, L117CrossRef
Marsh, T.R., 2001, MNRAS, 324, 547CrossRef
Maxted, P.F.L., Marsh, T.R., & North, R.C., 2000, MNRAS, 317, L41CrossRef
McLaughlin, D.B., 1924, ApJ, 60, 22CrossRef
Muirhead, P.S., Vanderburg, A., Shporer, A., et al., 2013, ApJ, 767, 111CrossRef
Prša, A., Batalha, N., Slawson, R.W., et al., 2011, AJ, 141, 83CrossRef
Prša, A., & Zwitter, T., 2005, ApJ, 628, 426CrossRef
Rossiter, R.A., 1924, ApJ, 60, 15CrossRef
Sahu, K.C., & Gilliland, R.L., 2003, ApJ, 584, 1042CrossRef
Shibahashi, H., & Kurtz, D.W., 2012, MNRAS, 422, 738CrossRef
Shporer, A., Brown, T., Mazeh, T., & Zucker, S., 2012, NewA, 17, 309CrossRef
Shporer, A., Jenkins, J.M., Rowe, J.F., et al., 2011, AJ, 142, 195CrossRef
Slawson, R.W., Prša, A., Welsh, W.F., et al., 2011, AJ, 142, 160CrossRef
Telting, J.H., Østensen, R.H., Baran, A.S., et al., 2012, A&A, 544, A1
van Kerkwijk, M.H., Rappaport, S.A., Breton, R.P., et al., 2010, ApJ, 715, 51CrossRef
Zucker, S., Mazeh, T., & Alexander, T., 2007, ApJ, 670, 1326CrossRef
Wilson, R.E., & van Hamme, W., 2010, in Binaries – Key to Comprehension of the Universe, ASP Conf. Ser., 435, 45
Zucker, S., Mazeh, T., & Alexander, T., 2007, ApJ, 670, 1326CrossRef