Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-20T09:14:14.240Z Has data issue: false hasContentIssue false

Interstellar chemistry of atomic nitrogen: Low temperature kinetics of the N + OH, N + CN and N + NO reactions

Published online by Cambridge University Press:  13 February 2013

A. Bergeat
Affiliation:
Univervité Bordeaux, ISM, CNRS UMR 5255, 33400 Talence, France CNRS, ISM, CNRS UMR 5255, 33400 Talence, France
J. Daranlot
Affiliation:
Univervité Bordeaux, ISM, CNRS UMR 5255, 33400 Talence, France CNRS, ISM, CNRS UMR 5255, 33400 Talence, France
K.M. Hickson
Affiliation:
Univervité Bordeaux, ISM, CNRS UMR 5255, 33400 Talence, France CNRS, ISM, CNRS UMR 5255, 33400 Talence, France
M. Costes
Affiliation:
Univervité Bordeaux, ISM, CNRS UMR 5255, 33400 Talence, France CNRS, ISM, CNRS UMR 5255, 33400 Talence, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

More than 100 reactions between stable molecules and free radicals have been shown to remain rapid at low temperatures. In contrast, reactions between two unstable radicals have received much less attention due to the added complexity of producing and measuring excess radical concentrations. We performed kinetic experiments on the barrierless N + OH and N + CN reactions in a supersonic flow (Laval nozzle) reactor. The results provide insight into the gas-phase formation mechanisms of molecular nitrogen in interstellar clouds (ISCs).

Type
Research Article
Copyright
© The Author(s) 2013

References

Références

Atakan, B., Kocis, D., Wolfrum, J., & Nelson, P., 1992, Symp. (Int.) on Combust., 24 , 691 CrossRef
Bergeat, A., Hickson, K.M., Daugey, N., Caubet, P., & Costes, M., 2009, Phys. Chem. Chem. Phys., 11 , 8149 CrossRef
Berteloite, C., Lara, M., Bergeat, A., et al., 2010, Phys. Rev. Lett., 105 , 203201 CrossRef
Brune, W.H., Schwab, J.J., & Anderson, J.G., 1983, J. Phys. Chem., 87 , 4503 CrossRef
Carty, D., Goddard, A., Kohler, S.P.K., Sims, I.R., & Smith, I.W.M., 2006, J. Phys. Chem. A, 110 , 3101 CrossRef
Daranlot, J., Jorfi, M., Xie, C., et al., 2011, Science, 334 , 1538 CrossRef
Daranlot, J., Hincelin, U., Bergeat, A., et al., 2012, Proc. Natl. Acad. Sci. USA, 109 , 10233 CrossRef
Edvardsson, D., Williams, C.F., & Clary, D.C., 2006, Chem. Phys. Lett., 431 , 261 CrossRef
Ge, M.H., Chu, T.S., & Han, K.L., 2008, J. Theo. Comput. Chem., 7 , 607 CrossRef
Herbst, E., Lee, H.-H., Howe, D.A., & Millar, T.J., 1994, MNRAS, 268 , 335 CrossRef
Howard, M.J., & Smith, I.W.M., 1981, J. Chem. Soc. Faraday Trans., 2 , 77, 997
Jorfi, M., Honvault, P., & Halvick, P., 2009, Chem. Phys. Lett., 471 , 65 CrossRef
Li, A., Xie, C., Xie, D., & Guo, H., 2011, J. Chem. Phys., 134 , 194309 CrossRefPubMed
Maret, S., Bergin, E.A., & Lada, C.J., 2006, Nature, 442 , 425 CrossRef
Milligan, D.B., Fairley, D.A., Freeman, C.G., & McEwan, M.J., 2000, Int. J. Mass Spectrom., 202 , 351 CrossRef
Sims, I.R., Queffelec, J.L., Defrance, A., et al., 1992, J. Chem. Phys., 97 , 8798 CrossRef
Smith, I.W.M., & Stewart, D.W.A., 1994, J. Chem. Soc. Faraday Trans., 90 , 3221 CrossRef
Whyte, A.R., & Phillips, L.F., 1983, Chem. Phys. Lett., 98 , 590 CrossRef