Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T05:07:20.026Z Has data issue: false hasContentIssue false

From microscopic to macroscopic processes: hydrodynamical consequences of atomic diffusion

Published online by Cambridge University Press:  19 December 2013

S. Vauclair*
Affiliation:
IRAP, Observatoire Midi-Pyrénées, CNRS,Université Paul-Sabatier, Toulouse, France
Get access

Abstract

The atomic (microscopic) diffusion of individual elements in stellar interiors and atmospheres lead to their accumulation or depletion in specific layers. The selective radiative accelerations on individual elements, which work in opposition to the effects of the pressure and thermal gradients, have important consequences. When acting on elements like iron or nickel, which are important contributors to the opacity in some stellar layers, the resulting overabundance can lead to global macroscopic effects, like extra convective zones or wave excitation by kappa mechanism. The competition between atomic diffusion and independent hydrodynamical processes including turbulent (macroscopic) diffusion has been extensively studied in previous years using parametrized computations. An important macroscopic consequence of atomic diffusion was however ignored: the double-diffusive mixing, also referred to as fingering or thermohaline convection, directly induced by μ-gradient inversion created by local heavy element accumulation. Taking this process into account will modify the studies of the element abundance variations inside stars and in their atmospheres.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alecian, G., & LeBlanc, F., 2000, MNRAS, 319, 677CrossRef
Alecian, G., & LeBlanc, F., 2002, MNRAS, 332, 891CrossRef
Alecian, G., Gebran, M., Auvergne, M., et al., 2009, A&A, 506, 69
Bahcall, J.N., Pinsonneault, M.H., & Wasserburg, G.J., 1995, Rev. Mod. Phys., 67, 781CrossRef
Bourge, P.O., & Alecian, G., 2006, ASP Series, 349, 201
Brown, J.M., Garaud, P., & Stellmach, S., 2013, ApJ, 768, 34CrossRef
Burgers, J.M., 1969, Flow Equations for Composite Gases (New York: Academic Press)Google Scholar
Chapman, S., & Cowling, T.G., 1970, The mathematical theory of non-uniform gases (Cambridge: University Press, 3rd ed.)Google Scholar
Charpinet, S., Fontaine, G., Brassard, P., et al., 1997, ApJ, 483, L123CrossRef
Denissenkov, P.A., 2010, ApJ, 723, 563CrossRef
Gough, D.O., Kosovichev, A.G., Toomre, J., et al., 1996, Science, 272, 1296CrossRef
Guzik, J.A., Kaye, A.B., Bradley, P.A., Cox, A.N., & Neuforge, 2000, ApJ, 542, L57CrossRef
Kippenhahn, R., Ruschenplatt, G., & Thomas, H.-C., 1980, A&A, 91, 175
Michaud, G., Vauclair, G., & Vauclair, S., 1983, ApJ, 267, 256CrossRef
Michaud, G., Charland, Y., Vauclair, S., & Vauclair, G., 1976, ApJ, 210, 447CrossRef
Michaud, G., Richer, J., & Richard, O., 2008, ApJ, 675, 1223CrossRef
Pamyatnykh, A.A., Handler, G., & Dziembowski, W., 2004, MNRAS, 350, 1022CrossRef
Richard, O., Vauclair, S., Charbonnel, C., & Dziembowski, W.A., 1996, A&A, 312, 1000PubMed
Richard, O., Michaud, G., & Richer, J., 2001, ApJ, 558, 377CrossRef
Richer, J., Michaud, G., & Turcotte, S., 2000, ApJ, 529, 338CrossRef
Théado, S., Vauclair, S., Alecian, G., & LeBlanc, F., 2009, ApJ, 704, 1262CrossRef
Théado, S., Alecian, G., & LeBlanc, F., Vauclair, S., 2012, A&A, 546, A100
Traxler, A., Garaud, P., & Stellmach, S., 2011, ApJ, 728, 29CrossRef
Turcotte, S., Richer, J., Michaud, G., & Christensen-Dalsgaard, J., 2000, A&A, 360, 603
Ulrich, R.K., 1972, ApJ, 172, 165CrossRef
Vauclair, S., & Vauclair, G., 1982, ARA&A, 20, 37CrossRef
Vauclair, S., 2004, ApJ, 605, 874CrossRef
Vauclair, S., & Théado, S., 2012, ApJ, 753, 49CrossRef