Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T09:35:43.188Z Has data issue: false hasContentIssue false

The formation of carbon dioxide in molecular cores by a non-energetic route

Published online by Cambridge University Press:  13 February 2013

J.A. Noble
Affiliation:
Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow, G4 ONG, Scotland LERMA-LAMAp, Université de Cergy-Pontoise, Observatoire de Paris, ENS, UPMC, UMR 8112 du CNRS, 5 mail Gay Lussac, 95000 Cergy Pontoise Cedex, France;. e-mail: [email protected]
F. Dulieu
Affiliation:
LERMA-LAMAp, Université de Cergy-Pontoise, Observatoire de Paris, ENS, UPMC, UMR 8112 du CNRS, 5 mail Gay Lussac, 95000 Cergy Pontoise Cedex, France;. e-mail: [email protected]
E. Congiu
Affiliation:
LERMA-LAMAp, Université de Cergy-Pontoise, Observatoire de Paris, ENS, UPMC, UMR 8112 du CNRS, 5 mail Gay Lussac, 95000 Cergy Pontoise Cedex, France;. e-mail: [email protected]
H.J. Fraser
Affiliation:
Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow, G4 ONG, Scotland

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The formation of CO2 in quiescent molecular cores has long been of interest to astrochemists as CO2 is one of the most abundant solid phase molecules present in the interstellar medium. Previous studies have concentrated, for the most part, on formation mechanisms involving high energy particle or UV bombardment of ices, to mimic the influence of cosmic rays on solid phase species in the outer, lower density regions of molecular clouds. However, condensed phase CO2 is also observed in the inner, denser regions of clouds, where less UV radiation penetrates. To date, very few studies have been made of CO2 formation in the absence of energetic particles.

Low-energy routes to the formation of CO2 are crucial to explain the high abundances of this molecule observed in quiescent regions. We discuss recent experimental results of a study of the low-energy reaction CO + OH. A simple model, developed to describe the kinetics of the system, suggests that the various reactions of the OH radical are key in characterising the production of CO2 and other species. Our results indicate that some CO2 forms concurrently with H2O in molecular clouds, in line with both previous observations and theory. The results of this research are published in Noble et al. (2011).

Type
Research Article
Copyright
© The Author(s) 2013

References

Références

Gerakines, P.A., Whittet, D.C.B., Ehrenfreund, P., et al., 1999, ApJ, 522 , 357 CrossRef
Gibb, E.L., Whittet, D.C.B., Boogert, A.C.A., & Tielens, A.G.G.M., 2004, ApJS, 151 , 35 CrossRef
de Graauw, T., Whittet, D.C.B., Gerakines, P.A., et al., 1996, A&A, 315 , L345
d’Hendecourt, L.B., & Jourdain de Muizon, M., 1989, A&A, 223 , L5
Ioppolo, S., van Boheemen, Y., Cuppen, H.M., van Dishoeck, E.F., & Linnartz, H., 2011, MNRAS, 413 , 2281 CrossRef
Knez, C., Boogert, A.C.A., Pontoppidan, K.M., et al., 2005, ApJ, 635 , L145 CrossRef
Noble, J.A., Dulieu, F., Congiu, E., & Fraser, H.J., 2011, ApJ, 735 , 121 CrossRef
Nummelin, A., Whittet, D.C.B., Gibb, E.L., Gerakines, P.A., & Chiar, J.E., 2001, ApJ, 558 , 185 CrossRef
Oba, Y., Watanabe, N., Kouchi, A., Hama, T., & Pirronello, V., 2010, ApJ, 712 , L174 CrossRef
Pontoppidan, K.M., Fraser, H.J., Dartois, E., et al., 2003, A&A, 408 , 981
Pontoppidan, K.M., 2006, A&A, 453 , L47
Pontoppidan, K.M., Boogert, A.C.A., Fraser, H.J., et al., 2008, ApJ, 678 , 1005 CrossRef
Shimonishi, T., Onaka, T., Kato, D., et al., 2010, A&A, 514 , A12
Zins, E.-L., Joshi, P.R., & Krim, L., 2011, ApJ, 738 , 175CrossRef