Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-12T21:37:34.005Z Has data issue: false hasContentIssue false

Are strong MgII Absorbers Signatures of Outflows?

Published online by Cambridge University Press:  17 September 2012

N. Bouché
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, Garching 85748, Germany. e-mail: [email protected];
M.T. Murphy
Affiliation:
Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
C. Péroux
Affiliation:
Observatoire Astronomique de Marseille-Provence, 13388 Marseille Cedex 13, France
Get access

Abstract

Low-ionization transitions such as the Mg iiλ2796/2803 doublet trace cold gas in the vicinity of galaxies. The exact physical origin of this cold gas traced by QSO absorption lines is debated. Does it trace gas in disks, halos, merger tails, and even in outflows? Recent studies of strong starbursts and post-starbursts at intermediate redshifts have shown that Mg ii are seen in outflows, with blue-shifted velocities ∼500 − 1500km s−1. Strong intervening Mg ii absorbers (with equivalent width Wrλ2796 > 1Å) may be tracing the denser and colder gas of starburst-driven outflows. Indeed, based on Mg ii statistics, our clustering analysis has shown that the host-galaxy mass is anti-correlated with the line-of-sight velocity Δv (as measured from Wrλ2796). If Mg ii absorbers were virialized in galaxy halos, a positive MhWr correlation would have been observed. Our result thus shows that the Mg ii clouds are not virialized in the gaseous halos of the host-galaxies.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergeron, J., & Boissé., P., 1991, A&A, 243, 344
Bond, N.A., Churchill, C.W., Charlton, J.C., & Vogt, S.S., 2001, ApJ, 557, 761CrossRef
Bouché, N., Murphy, M.T., Peroux, C., Csabai, I., & Wild, V., 2006, MNRAS, 371, 495CrossRef
Bouché, N., Murphy, M.T., Péroux, C., et al., 2007, ApJ, 669, L5CrossRef
Cen, R., & Ostriker, J.P., 2006, ApJ, 650, 560CrossRef
Churchill, C.W., Kacprzak, G.G., & Steidel, C.C., 2005, IAU Colloq. 199: Probing Galaxies through Quasar Absorption Lines, 24
Churchill, C.W., Mellon, R.R., Charlton, J.C., et al., 2000, ApJS, 130, 91CrossRef
Churchill, C.W., Rigby, J.R., Charlton, J.C., & Vogt, S.S., 1999, ApJS, 120, 51CrossRef
Dekel, A., Birnboim, Y., Engel, G., et al., 2009, Nature, 457, 451CrossRef
Ellison, S.L., 2006, MNRAS, 368, 335CrossRef
Ellison, S.L., Mallén-Ornelas, G., & Sawicki, M., 2003, ApJ, 589, 709CrossRef
Gauthier, J.-R., Chen, H.-W., & Tinker, J.L., 2009 [ArXiv e-prints]
Heckman, T.M., 2003, ed. V. Avila-Reese, C. Firmani, C.S. Frenk & C. Allen, Revista Mexicana de Astronomia y Astrofisica Conference Series, Revista Mexicana de Astronomia y Astrofisica Conference Series, 17, 47Google Scholar
Heckman, T.M., Armus, L., & Miley, G.K., 1990, ApJS, 74, 833CrossRef
Lundgren, B.F., Brunner, R.J., York, D.G., et al., 2009 [ArXiv e-prints]
Martin, C.L., 2006, ApJ, 647, 222CrossRef
Martin, C.L., Kobulnicky, H.A., & Heckman, T.M., 2002, ApJ, 574, 663CrossRef
Oppenheimer, B.D., & Davé, R., 2006, MNRAS, 373, 1265CrossRef
Oppenheimer, B.D., & Davé, R., 2008, MNRAS, 387, 577CrossRef
Prochter, G.E., Prochaska, J.X., & Burles, S., 2006, ApJ, 639, 766CrossRef
Steidel, C.C., Dickinson, M., & Persson, S.E., 1994, ApJ, 437, L75CrossRef
Tinker, J.L., & Chen, H.-W., 2008, ApJ, 679, 1218CrossRef
Tremonti, C.A., Moustakas, J., & Diamond-Stanic, A.M., 2007, ApJ, 663, L77CrossRef
Weiner, B.J., Coil, A.L., Prochaska, J.X., et al., 2009, ApJ, 692, 187CrossRef
Zibetti, S., Ménard, B., Nestor, D.B., et al., 2007, ApJ, 658, 161CrossRef