Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T06:17:04.231Z Has data issue: false hasContentIssue false

Principles of Image Reconstruction in Interferometry

Published online by Cambridge University Press:  13 March 2013

É. Thiébaut*
Affiliation:
Centre de Recherche Astronomique de Lyon, Université Claude Bernard Lyon I, École Normale Supérieure de Lyon, France. e-mail: [email protected]
Get access

Abstract

Image reconstruction from interferometric data is an inverse problem. Owing to the sparse spatial frequency coverage of the data and to missing Fourier phase information, one has to take into account not only the data but also prior constraints. Image reconstruction then amounts to minimizing a joint criterion which is the sum of a likelihood term to enforce fidelity to the data and a regularization term to impose the priors. To implement strict constraints such as normalization and non-negativity, the minimization is performed on a feasible set. When the complex visibilities are available, image reconstruction is relatively easy as the joint criterion is convex and finding the solution is similar to a deconvolution problem. In optical interferometry, only the powerspectrum and the bispectrum can be measured and the joint criterion is highly multi-modal. The success of an image reconstruction algorithm then depends on the choice of the priors and on the ability of the optimization strategy to find a good solution among all the local minima.

Type
Research Article
Copyright
© EAS, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baron, F., & Young, J.S., 2008, Image reconstruction at cambridge university. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conf. Ser., Vol. 7013, 70133X, DOI: 10.1117/12.789115
Boyd, S., Parikh, N., Chu, E., Peleato, Bo., & Eckstein, J., 2010, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3, 1, DOI: 10.1561/2200000016,http://www.stanford.edu/˜boyd/papers/pdf/admm_distr_stats.pdf CrossRefGoogle Scholar
Buscher, D.F., 1994, Direct maximum-entropy image reconstruction from the bispectrum, ed. J.G. Robertson & W.J. Tango, IAU Symp. 158: Very High Angular Resolution Imaging, p. 91
Campisi, P., & Egiazarian, K., 2007, Blind image deconvolution: theory and applications (CRC Press), ISBN 9780849373671
Chambolle, A., Levine, S.E., & Lucier, B.J., 2011, SIAM J. Imaging Sciences, 4, 277 CrossRef
Charbonnier, P., Blanc-Féraud, L., Aubert, G., & Barlaud, M., 1997, IEEE Trans. Image Process., 6, 298 CrossRef
Combettes, P.L., & Pesquet, J.-C., 2011, Proximal splitting methods in signal processing, chapter Fixed-Point Algorithms for Inverse Problems in Science and Engineering (Springer, New York), 185
Cornwell, T., 1995, Imaging concepts, ed. J.A. Zensus, P.J. Diamond & P.J. Napier, ASP Conf. Ser. 82, 39
Cornwell, T.J., & Wilkinson, P.N., 1981, MNRAS, 196, 1067 CrossRef
Dainty, J.C., & Greenaway, A.H., 1979, J. Opt. Soc. Am., 69, 786 CrossRef
Delplancke, F., Derie, F., Paresce, F., et al., 2003, Ap&SS, 286, 99,
Donoho, D., 2006, Comm. Pure Appl. Math., 59, 907 CrossRef
Elad, M., Milanfar, P., & Rubinstein, R., 2007, Inverse Probl., 23, 947 CrossRef
Fessler, J.A., & Sutton, B.P., 2003, IEEE Trans. Signal Process., 51, 560 CrossRef
Gabay, D., & Mercier, B., 1976, Comput. Math. Applications, 2, 17 CrossRef
Goodman, J.W., 1985, Statistical Optics (John Wiley & Sons), ISBN 0-471-01502-4
Haniff, C., 1991, J. Opt. Soc. Am. A, 8, 134 CrossRef
Hestenes, M.R., 1969, J. Optimiz. Theory Applications, 4, 303 CrossRef
Hofmann, K.-H., & Weigelt, G., 1993, A&A, 278, 328
Horne, K., 1985, MNRAS, 213, 129 CrossRef
Högbom, J.A., 1974, A&AS, 15, 417 PubMed
Ireland, M.J., Monnier, J., & Thureau, N., 2008, Monte-Carlo imaging for optical interferometry, ed. J.D. Monnier, M. Schöller & W.C. Danchi, Advances in Stellar Interferometry, Vol. 6268, p. 62681T1, SPIE, DOI: 10.1117/12.670940
Lacour, S., Meimon, S., Thiébaut, É., et al., 2008, A&A, 485, 561
Lannes, A., Anterrieu, E., & Maréchal, P., 1997, A&AS, 123, 183
Lannes, A., 2001, J. Opt. Soc. Am. A, 18, 1046 CrossRef
Lawson, P.R., Cotton, W.D., Hummel, C.A., et al., 2004, BAAS, 36, 1605
le Besnerais, G., Lacour, S., Mugnier, L.M., et al., 2008, IEEE J. Selected Topics Signal Process., 2, 767 CrossRef
le Bouquin, J.-B., Lacour, S., Renard, S., et al., 2009, A&A, 496, L1
Meimon, S., Mugnier, L.M., & le Besnerais, G., 2005a, J. Opt. Soc. Am. A, 22, 2348 CrossRef
Meimon, S., Mugnier, L.M., & le Besnerais, G., 2005b, Opt. Lett., 30, 1809 CrossRef
Moré, J., & Toraldo, G., 1991, SIAM J. Optim., 1, 93, http://locus.siam.org/SIOPT/volume-01/art_0801008.html CrossRef
Narayan, R., & Nityananda, R., 1986, ARA&A, 24, 127 CrossRef
Nocedal, J., & Wright, S.J., 2006, Numerical Optimization, 2nd edition (Springer Verlag), http://www.zla-ryba.cz/NumOpt.pdf
Pauls, T.A., Young, J.S., Cotton, W.D., & Monnier, J.D., 2005, PASP, 117, 1255 CrossRef
Petrov, R.G., Malbet, F., et al., 2007, A&A, 464, 1
Potts, D., Steidl, G., & Tasche, M., 2001, Modern Sampling Theory: Mathematics and Applications, chapter Fast Fourier transforms for nonequispaced data: A tutorial (Birkhauser, Boston), 249
Powell, M.J.D., 1969, Optimization, chapter A method for nonlinear constraints in minimization problems (Academic Press), 283
Renard, S., Thiébaut, É., & Malbet, F., 2011, A&A, 533, A64
Roddier, F., 1981, The effects of atmospheric turbulence in optical astronomy, Vol 19 (North-Holland Publishing Company, Amsterdam), 281
Rudin, L.I., Osher, S., & Fatemi, E., 1992, Physica D, 60, 259 CrossRef
Schwab, F., 1980, Proc. SPIE, 231, 18 CrossRef
Skilling, J., & Bryan, R.K., 1984, MNRAS, 211, 111 CrossRef
Soulez, F., Thiébaut, É., Gressard, A., Dauphin, R., & Bongard, S., 2008, Heterogeneous multidimensional data deblurring, In 16th European Signal Processing Conference (EUSIPCO), Lausanne, Suisse, http://hal-ujm.ccsd.cnrs.fr/ujm-00293660/en/
Sramek, R., & Schwab, F., 1989, Imaging, ed. Richard A. Perley, Frederic R., Schwab & Alan H. Bridle, Synthesis Imaging in Radio Astronomy, Vol. 6, 117
Thiébaut, É., & Giovannelli, J.-F., 2010, IEEE Signal Process. Mag., 27, 97 CrossRef
Thiébaut, É., 2008, MiRA: an effective imaging algorithm for optical interferometry, ed. Françoise Delplancke Markus Schöller, William C. Danchi. Astronomical Telescopes and Instrumentation, Vol. 7013, 70131I–1, SPIE
Thiébaut, É., 2009, New Astron. Rev., 53, 312 CrossRef
Thiébaut, É., Soulez, F., & Denis, L., 2012, accepted for publication in J. Opt. Soc. Am. A, http://arxiv.org/abs/1209.2362
Thompson, A.R., & Bracewell, R.N., 1974, AJ, 79, 11 CrossRef
Thévenaz, P., Blu, T., & Unser, M., 2000, IEEE Trans. Medical Imag., 19, 739, http://bigwww.epfl.ch/publications/thevenaz0002.html CrossRef
Tikhonov, A.N., & Arsenin, V.Y., 1977, Solution of Ill-posed Problems, Scripta Series in Mathematics (Winston & Sons, Washington), ISBN 0-470-99124-0
Wirnitzer, B., 1985, J. Opt. Soc. Am. A, 2, 14 CrossRef