Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-06T02:41:45.074Z Has data issue: false hasContentIssue false

Non-inheriting Einstein-Maxwell theoryand black holes

Published online by Cambridge University Press:  30 September 2008

P. Tod*
Affiliation:
Mathematical Institute, Oxford University, Oxford OX1 3LB, UK
Get access

Abstract

Following an earlier work (Tod 2007a), we consider static and stationary solutions ofthe Einstein-Maxwell equations in whichthe Maxwell field is not constant along the Killing vector definingtime-independence, so that the symmetry of the space-time is notinherited by the electromagnetic field. In particular, we look fornoninheriting black hole solutions and find severe constraintson the possibilities.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banerji, A., 1970, J. Math. Phys., 11, 51 CrossRef
Chruściel, P.T., Reall, H.S., & Tod, K.P., 2006a, Class. Quant. Grav., 23, 2519 CrossRef
Chruściel, P.T., Reall, H.S., & Tod, K.P., 2006b, Class. Quant. Grav., 23, 549 CrossRef
MacCallum, M.A.H., & Van den Bergh, N., 1985, in Galaxies, Axisymmetric Systems and Relativity ed. M.A.H. MacCallum (Cambridge) CUP
Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., & Herlt, E., 2003, Exact Solutions of Einstein's Field Equations. Second edition. Cambridge Monographs on Mathematical Physics (Cambridge University Press)
Tod, K.P., 2007a, Gen. Rel. Grav., 39, 111 CrossRef
Tod, K.P., 2007b, Gen. Rel. Grav., 39, 1031 CrossRef