Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T01:01:21.943Z Has data issue: false hasContentIssue false

Modeling rotating stars in two dimensions

Published online by Cambridge University Press:  27 September 2013

M. Rieutord*
Affiliation:
Université de Toulouse, UPS-OMP, IRAP, Toulouse, France CNRS, IRAP, 14 avenue Edouard Belin, 31400 Toulouse, France
Get access

Abstract

In this lecture I present the way stars can be modeled in two dimensions and especially the fluid flows that are driven by rotation. I discuss some of the various ways of taking into account turbulence and conclude this contribution by a short presentation of some of the first results obtained with the ESTER code on the modeling of interferometrically observed fast rotating early-type stars.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Busse, F., 1981, Geophys. Astrophys. Fluid Dyn., 17, 215CrossRef
Che, X., Monnier, J.D., Zhao, M., et al., 2011, ApJ, 732, 68CrossRef
Deupree, R.G., 2011, ApJ, 735, 69CrossRef
Deupree, R.G., Castañeda, D., Peña, F., & Short, C.I., 2012, ApJ, 753, 20CrossRef
Domiciano de Souza, A., Hadjara, M., Vakili, F., et al., 2012, A&A, 545, A130
Domiciano de Souza, A., Vakili, F., Jankov, S., Janot-Pacheco, E., & Abe, L., 2002, A&A, 393, 345
Eggenberger, P., Charbonnel, C., Talon, S., et al., 2004, A&A, 417, 235
Espinosa Lara, F., & Rieutord, M., 2011, A&A, 533, A43
Espinosa Lara, F., & Rieutord, M., 2012, A&A, 547, A32
Espinosa Lara, F., & Rieutord, M., 2013, A&A, 552, A35
Kitchatinov, L., Pipin, V., & Rüdiger, G., 1994, AN, 315, 157
Launder, B.E., & Spalding, D.B., 1972, Lectures in mathematical models of turbulence (Academic Press)Google Scholar
Maeder, A., 2009, Physics, Formation and Evolution of Rotating stars (Springer)Google Scholar
Maeder, A., & Meynet, G., 2000, Ann. Rev. Astron. Astrophys., 38, 143CrossRef
Mérand, A., Kervella, P., Pribulla, T., et al., 2011, A&A, 532, A50
Monnier, J., Che, X., Zhao, M., et al., 2012, ApJ, 761, L3CrossRef
Monnier, J.D., Townsend, R.H.D., Che, X., et al., 2010, ApJ, 725, 1192CrossRef
Morel, P., 1997, A&AS, 124, 597PubMed
Ouazzani, R.-M., Dupret, M.-A., & Reese, D.R., 2012, A&A, 547, A75
Pribulla, T., Merand, A., Kervella, P., et al., 2011, A&A, 528, A21
Reese, D., Lignières, F., & Rieutord, M., 2006, A&A, 455, 621
Reese, D.R., Prat, V., Barban, C., van 't Veer-Menneret, C., & MacGregor, K.B., 2013, A&A, 550, A77
Rieutord, M., 1997, Une introduction à la dynamique des fluides (Masson)Google Scholar
Rieutord, M., 2006a, A&A, 451, 1025
Rieutord, M., 2006b, in Stellar Fluid Dynamics and Numerical Simulations: From the Sun to Neutron Stars, ed. Rieutord, M. & Dubrulle, B., EAS Publications Series, 21, 275Google Scholar
Rieutord, M., & Espinosa Lara, F., 2012, in SeIsmology for Studies of Stellar Rotation and Convection, ed. Goupil, M.-J., Belkacem, K., Neiner, C., Lignières, F. & Green, J., 49 [astro–ph/1208.4926]Google Scholar
Rüdiger, G., 1989, Differential Rotation and Stellar Convection (Akademie-Verlag Berlin)Google Scholar
Snellman, J.E., Brandenburg, A., Käpylä, P.J., & Mantere, M.J., 2012, Astron. Nachr., 333, 78CrossRef
Townsend, A.A., 1958, J. Fluid Mech., 4, 361CrossRef
Vinicius, M.M.F., Zorec, J., Leister, N.V., & Levenhagen, R.S., 2006, A&A, 446, 643
von Zeipel, H., 1924, MNRAS, 84, 665CrossRef
Zahn, J.-P., 1992, A&A, 265, 115PubMed