Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T06:21:32.716Z Has data issue: false hasContentIssue false

Hypertelescopes: The Challenge of Direct Imaging at High Resolution

Published online by Cambridge University Press:  13 March 2013

A. Labeyrie*
Affiliation:
Collège de France and Observatoire de la Côte d’Azur, 06460 Caussols, France
Get access

Abstract

Sparse optical interferometric arrays of many apertures can produce direct images in the densified-pupil mode, also called “hypertelescope” mode. Pending the introduction of adaptive optics for cophasing, indirect images can also be reconstructed with speckle imaging techniques. But adaptive phasing is preferable, when a sufficiently bright guide star is available. Several wave sensing techniques, by-products of those used on monolithic telescopes for some of them, are potentially usable. For cophased direct images of very faint sources in the absence of a natural guide star, a modified form of the Laser Guide Star techniques demonstrated on conventional and segmented telescopes is described. Preliminary testing in laboratory suggests further investigation. Recorded images, assumed co-phased, are also improvable post-detection with optical aperture-synthesis techniques such as Earth rotation synthesis, where data from successive exposures are combined incoherently. Nevertheless, the gain becomes modest if hundreds of sub-apertures are used. Image deconvolution techniques are also applicable, if suitably modified as demonstrated by Aime et al. (2012), and Mary (2012). Their modified deconvolution algorithms can extend the Direct Imaging Field (also called Clean Field) of hypertelescopes. More sub-apertures at given collecting area, implying that their size is reduced, improve the direct-imaging performance. The predictable trend thus favors systems combining hundreds of sub-apertures of modest size, if workable designs can be evolved. One such design, the “Ubaye Hypertelescope” entering the initial testing phase in the southern Alps, has a fixed spherical meta-mirror with a 57 m effective aperture, expandable to 200 m. Preliminary results suggest that larger versions, whether spherical or active paraboloidal, can reach a kilometric aperture size at terrestrial sites having a suitable concave topography. In space, hypertelescope meta-apertures spanning up to 100 000 km are in principle feasible in the form of a flotilla of mirrors, driven by micro-thrusters or by the radiation pressure of the Sun or lasers.

Type
Research Article
Copyright
© EAS, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aime, C., Lanteri, H., Diet, M., & Carlotti, A., 2012, A&A, 543A, 42A
Arnold, L., Labeyrie, A., Mourard, D., 1996, Adv. Space Res., 18, 49 CrossRef
Boccaletti, , et al., 2000, Icarus, 145, 636 CrossRef
Bonaccini Calia, D., Myers, R.M., Zappa, F., et al., 2004, SPIE, 5490, 1315
Borkowski, V., & Labeyrie, A., 2004, EAS Publications Series, 12, 287 CrossRef
Buscher, D.F., Love, G.D., & Myers, R.M., 2002, Opt. Lett., 27, 149 CrossRef
Bouyeron, L., Delage, L., Grossard, L., & Reynaud, F., 2012, A&A, 545, A18
Chapa, O., Cuevas, S., Sánchez, B., et al., 2007, Rev. Mex. Astron. Astrofis. Conf. Ser., 28, 82
Crandall, R.S., et al., 1985, “Reversible optical storage medium and a method for recording information therein” US patent, http://www.google.com/patents/US4320489
Dainty, J.C., 1974, MNRAS, 169, 631 CrossRef
Infeld, S.I., 2006, “Optimization of Mission Design for Constrained Libration Point Space Missions” Ph.D. Stanford, http://www.stanford.edu/group/SOL/dissertations/samantha-thesis.pdf
Kraemer, S., Windhorst, R., Carpenter, K.G., et al., 2010, in “Astro2010: The Astronomy and Astrophysics Decadal Survey, Science White Papers, 162”
Le Coroller, H., Dejonghe, J., Arpesella, C., Vernet, D., & Labeyrie, A., 2004, A&A, 426, 721
Enmark, A., Andersen, T., Owner-Petersen, M., Chakraborty, R., & Labeyrie, A., 2011, Integrated model of the Carlina Telescope”, in “Integrated Modeling of Complex Optomechanical Systems”, ed. Andersen, Torben, Enmark & Anita, Proceedings of the SPIE, Vol. 8336, 83360J-83360J-14
Lardière, O., Martinache, F., & Patru, F., 2007, MNRAS, 375, 977 CrossRef
Labeyrie, A., 1996, A&A, 118, 517
Labeyrie, A., Le Coroller, H., & Dejonghe, J., 2008, SPIE, 7013
Labeyrie, A., 2008, Proceedings of the SPIE, Vol. 6986, 69860C-69860C-12
Labeyrie, A., et al., 2009, Exper. Astron. 23, 463 CrossRef
Labeyrie, A., et al., 2010, “Resolved Imaging of Extra-Solar Photosynthesis Patches with a “Laser Driven Hypertelescope Flotilla”, in “Pathways Towards Habitable Planets”, proceedings of a workshop held 14 to 18 September 2009 in Barcelona, Spain, ed., Vincent Coudé du Foresto, Dawn M. Gelino & Ignasi Ribas (San Francisco: Astronomical Society of the Pacific), 239
Labeyrie, A., et al., 2012, Optical and Infrared Interferometry III. Proceedings of the SPIE, Vol. 8445, id. 844512-844512-9
Labeyrie, A., et al., 2012, Optical and Infrared Interferometry III. Proceedings of the SPIE, Vol. 8445, id. 844511-844511-9
Labeyrie, A., 1979, A&A, 77, L1
Labeyrie, A., Guillon, M., & Fournier, J.M., 2012, “Optics of Laser Trapped Mirrors for large telescopes and hypertelescopes in space”, SPIE conf.
Le Coroller, H., Dejonghe, J., Regal, X., et al., 2012, A&A, 539, A59
Leger, , et al., 2011, Astrobiology, 11, 4 CrossRef
Lohmann, A.W., Weigelt, G., & Wirnitzer, B., 1983, Appl. Opt., 22, 4028 CrossRef
Martinache, F., 2004, J. Opt. A: Pure Appl. Opt., 6, 216 CrossRef
Martinache, F., 2012, A&A, 286, 365
Mary, , et al., 2013, EAS Publications Series, 59, 213 CrossRef
Mavroidis, T., Solomon, C.J., & Dainty, J.C., 1991, J. Opt. Soc. Am. A, 8, 1003 CrossRef
Mourard, D., et al., 2012, Optical and Infrared Interferometry III. Proceedings of the SPIE, Vol. 8445, id. 84451M-84451M-10
Patru, F., Tarmoul, N., Mourard, D., & Lardière, O., 2009, MNRAS, 395, 2363 CrossRef
Patru, F., Chiavassa, A., Mourard, D., & Tarmoul, N., Direct imaging with a hypertelescope of red supergiant stellar surfaces [eprint arXiv:1108.2320]
Pedretti, E., & Labeyrie, A., 1999, A&AS, 137, 543
Rabien, S., Eisenhauer, F., Genzel, R., Davies, R. I., & Ott, T., 2006, A&A, 450, 1, 2006, 415
Riaud, P., 2012, Eur. Phys. J. D, 66, 8 CrossRef
Surya, A., 2012, in preparation
Tcherniavski, I., 2011, Optical Engineering, 50, 3 CrossRef