Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T04:35:47.629Z Has data issue: false hasContentIssue false

Ranked Fragmentations

Published online by Cambridge University Press:  15 November 2002

Julien Berestycki*
Affiliation:
Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie, UMR 7599 du CNRS, 175 rue du Chevaleret, 75013 Paris, France; [email protected].
Get access

Abstract

In this paper we define and study self-similar rankedfragmentations. We first show that any ranked fragmentation is theimage of some partition-valued fragmentation, and that there is infact a one-to-one correspondence between the laws of these twotypes of fragmentations. We then give an explicit construction ofhomogeneous ranked fragmentations in terms of Poisson pointprocesses. Finally we use this construction and classical resultson records of Poisson point processes to study the small-timebehavior of a ranked fragmentation.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

D.J. Aldous, Exchangeability and related topics, edited by P.L. Hennequin, Lectures on probability theory and statistics, École d'été de Probabilité de Saint-Flour XIII. Springer, Berlin, Lectures Notes in Math. 1117 (1985).
Aldous, D.J., Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists. Bernoulli 5 (1999) 3-48. CrossRef
Aldous, D.J. and Pitman, J., The standard additive coalescent. Ann. Probab. 26 (1998) 1703-1726.
J. Bertoin, Lévy processes. Cambridge University Press, Cambridge (1996).
Bertoin, J., Homogeneous fragmentation processes. Probab. Theory Related Fields 121 (2001) 301-318. CrossRef
J. Bertoin, Self-similar fragmentations. Ann. Inst. H. Poincaré (to appear).
J. Bertoin, The asymptotic behaviour of fragmentation processes, Prépublication du Laboratoire de Probabilités et Modèles Aléatoires, Paris 6 et 7. PMA-651 (2001).
N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular variation. Cambridge University Press, Encyclopedia Math. Appl. 27 (1987).
Bolthausen, E. and Sznitman, A.S., Ruelle's, On probability cascades and an abstract cavity method. Commun. Math. Phys. 197 (1998) 247-276. CrossRef
Brennan, M.D. and Durrett, R., Splitting intervals. Ann. Probab. 14 (1986) 1024-1036. CrossRef
Brennan, M.D. and Durrett, R., Splitting intervals II. Limit laws for lengths. Probab. Theory Related Fields 75 (1987) 109-127. CrossRef
C. Dellacherie and P. Meyer, Probabilités et potentiel, Chapitres V à VIII. Hermann, Paris (1980).
Evans, S.N. and Pitman, J., Construction of Markovian coalescents. Ann. Inst. H. Poincaré Probab. Statist. 34 (1998) 339-383. CrossRef
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes. North-Holland Mathematical Library (1981).
Kingman, J.F.C., The coalescent. Stochastic Process. Appl. 13 (1960) 235-248. CrossRef
Perman, M., Order statistics for jumps of normalised subordinators. Stochastic Process. Appl. 46 (1993) 267-281. CrossRef
Pitman, J., Coalescents with multiple collisions. Ann. Probab. 27 (1999) 1870-1902. CrossRef
K. Sato, Lévy Processes and Infinitly Divisible Distributions. Cambridge University Press, Cambridge, Cambridge Stud. Adv. Math. 68 (1999).
Schweinsberg, J., Coalescents with simultaneous multiple collisions. Electr. J. Probab. 5-12 (2000) 1-50.http://www.math.washington.edu/ejpecp.ejp5contents.html