No CrossRef data available.
Article contents
Polynomial expansions of density of power mixtures
Published online by Cambridge University Press: 19 June 2007
Abstract
For any given random variable Y with infinitelydivisible distribution in a quadratic natural exponential family we obtain a polynomial expansion ofthe power mixture density of Y.We approach the problem generally, and then consider certain distributionsin greater detail.Various applications are indicated and the results are also appliedto obtain approximations and their error bounds.Estimation of density and goodness-of-fit test are derived.
Keywords
- Type
- Research Article
- Information
- Copyright
- © EDP Sciences, SMAI, 2007
References
M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions. Dover, New York (1972).
O.E. Barndorff-Nielsen, Information and Exponential Families. Wiley, New York (1978).
Casalis, M., The 2d + 4 simple quadratic natural exponential families on
$\xR^d$
.
Ann. Statist.
24 (1996) 1828–1854.
Feinsilver, P., Some classes of orthogonal polynomials associated with martingales.
Proc. A.M.S.
98 (1986) 298–302.
CrossRef
W. Feller, An Introduction to Probability Theory and Its Applications. Vol. I, Wiley (1966a).
W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, Wiley (1966b).
Fujikoshi, Y. and Shimizu, R., Asymptotic expansions for univariate and multivariate distributions.
J. Multivariate Anal.
30 (1989) 279–291.
CrossRef
Hall, P., Polynomial Expansion of Density and Distribution Functions of Scale Mixtures.
J. Multivariate Anal.
11 (1981) 173–184.
CrossRef
B. Jorgensen, The Theory of Dispersion models. Chapman & Hall, London (1997).
J. Keilson and F.W. Steutel, Mixtures of distributions, moment inequalities and measures of exponentiality and normality. Ann. Probab. 2 (1974) 112–130.
R. Koekoek and R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report no. 94-05, Delft University of Technology, Faculty of Technical Mathematics and Informatics (1994).
G. Letac, Lectures on natural exponential families and their variance functions. Instituto de matemática pura e aplicada: Monografias de matemática 50, Río de Janeiro, Brésil (1992).
J. Meixner, Orthogonal Polynomsysteme mit einer besonderen Gestalt der erzengenden Function, J. London Math. Soc.
9 (1934) 6–13.
Morris, C.N., Natural exponential families with quadratic variance functions.
Ann. Statist.
10 (1982) 65–82.
CrossRef
Pommeret, D., Orthogonal polynomials and natural exponential families.
Test
5 (1996) 77–111.
CrossRef
Pommeret, D., Multidimensional Bhattacharyya Matrices and Exponential Families.
J. Multivariate Anal.
63 (1997) 105–118.
CrossRef
J.C.W. Rayner and D.J. Best, Smooth Tests of Goodness of Fit. Oxford University Press, New York (1989).
Serfozo, R.F., Random Time Transformations of Semi-Markov Processes.
Ann. Math. Statist.
42 (1971) 176–188.
CrossRef
Shimizu, R., Error bounds for asymptotic expansion of the scale mixture of the normal distribution.
Ann. Inst. Statist. Math.
39 (1987) 611–622.
CrossRef
Shimizu, R., Expansion of the Scale Mixture of the Multivariate Normal Distributions with Error Bound Evaluated in the L1-Norm.
J. Multivariate Anal.
5 (1995) 126–138.
CrossRef
Shimizu, R. and Fujikoshi, Y., Sharp error bound for asymptotic expansions of distribution functions for scale mixture.
Ann. Inst. Statist. Math.
49 (1997) 285–297.
CrossRef