Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T12:39:14.196Z Has data issue: false hasContentIssue false

KPZ formula for log-infinitely divisible multifractal random measures

Published online by Cambridge University Press:  05 January 2012

Rémi Rhodes
Affiliation:
Université Paris-Dauphine, Ceremade, CNRS, UMR 7534, 75016 Paris, France. [email protected]; [email protected]
Vincent Vargas
Affiliation:
Université Paris-Dauphine, Ceremade, CNRS, UMR 7534, 75016 Paris, France. [email protected]; [email protected]
Get access

Abstract

We consider the continuous model of log-infinitely divisible multifractal random measures (MRM) introduced in [E. Bacry et al. Comm. Math. Phys. 236 (2003) 449–475]. If M is a non degenerate multifractal measure with associated metric ρ(x,y) = M([x,y]) and structure function ζ, we show that we have the following relation between the (Euclidian) Hausdorff dimension dimH of a measurable set K and the Hausdorff dimension dimHρ with respect to ρ of the same set: ζ(dimHρ(K)) = dimH(K). Our results can be extended to all dimensions: inspired by quantum gravity in dimension 2, we focus on the log normal case in dimension 2.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bacry, E. and Muzy, J.F., Log-infinitely divisible multifractal processes. Comm. Math. Phys. 236 (2003) 449475. CrossRef
Bacry, E., Kozhemyak, A. and Muzy, J.-F., Continuous cascade models for asset returns. J. Econ. Dyn. Control 32 (2008) 156199. CrossRef
Barral, J. and Mandelbrot, B.B., Multifractal products of cylindrical pulses. Probab. Theory Relat. Fields 124 (2002) 409430. CrossRef
Benjamini, I. and Schramm, O., KPZ in one dimensional random geometry of multiplicative cascades. Com. Math. Phys. 289 (2009) 653662. CrossRef
P. Billingsley, Ergodic Theory and Information. Wiley New York (1965).
Castaing, B., Gagne, Y. and Hopfinger, E., Velocity probability density functions of high Reynolds number turbulence. Physica D 46 (1990) 177200. CrossRef
F. David, Conformal Field Theories Coupled to 2-D Gravity in the Conformal Gauge. Mod. Phys. Lett. A 3 (1988).
J. Duchon, R. Robert and V. Vargas, Forecasting volatility with the multifractal random walk model, to appear in Mathematical Finance, available at http://arxiv.org/abs/0801.4220.
B. Duplantier and S. Sheffield, in preparation (2008).
K.J. Falconer, The geometry of fractal sets. Cambridge University Press (1985).
U. Frisch, Turbulence. Cambridge University Press (1995).
Kahane, J.-P., Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9 (1985) 105150.
Knizhnik, V.G., Polyakov, A.M. and Zamolodchikov, A.B., Fractal structure of 2D-quantum gravity. Modern Phys. Lett A 3 (1988) 819826. CrossRef
G. Lawler, Conformally Invariant Processes in the Plane. A.M.S (2005).
Q. Liu, On generalized multiplicative cascades. Stochastic Processes their Appl.. 86 (2000) 263–286.
B.B. Mandelbrot, A possible refinement of the lognormal hypothesis concerning the distribution of energy in intermittent turbulence, Statistical Models and Turbulence, La Jolla, CA, Lecture Notes in Phys. No. 12. Springer (1972) 333–335.
B.B. Mandelbrot, Multiplications aléatoires et distributions invariantes par moyenne pondérée aléatoire. CRAS, Paris 278 (1974) 289–292, 355–358.
Rajput, B. and Rosinski, J., Spectral representations of infinitely divisible processes. Probab. Theory Relat. Fields 82 (1989) 451487. CrossRef
R. Robert and V. Vargas, Gaussian Multiplicative Chaos revisited, available on arxiv at the URL http://arxiv.org/abs/0807.1036v1, to appear in the Annals of Probability.
Sheffield, S., Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139 (1989) 521541. CrossRef