Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T15:46:05.608Z Has data issue: false hasContentIssue false

A Donsker theorem to simulate one-dimensional processes with measurable coefficients

Published online by Cambridge University Press:  17 August 2007

Pierre Étoré
Affiliation:
CERMICS, École Nationale des Ponts et Chaussées, 6 et 8 avenue Blaise Pascal Cité Descartes, Champs sur Marne, 77455 Marne la Vallée Cedex 2, France; [email protected]
Antoine Lejay
Affiliation:
Projet OMEGA, Institut Élie Cartan (UMR 7502, Nancy-Université, CNRS, INRIA) and INRIA Lorraine, Campus scientifique, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France; [email protected]
Get access

Abstract

In this paper, we prove a Donsker theorem for one-dimensional processes generated by an operator with measurablecoefficients. We construct a random walk on any grid on the state space, using the transition probabilities of the approximated process, and the conditional average times it spends on each cell of the grid. Indeed we can compute thesequantities by solving some suitableelliptic PDE problems.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978).
P. Billingsley, Convergence of Probabilities Measures. John Wiley & Sons (1968).
L. Breiman, Probability. Addison-Wesley Series in Statistics (1968).
H. Brezis, Analyse fonctionnelle. Masson (1983).
Decamps, M., De Schepper, A. and Goovaerts, M., Applications of δ-function pertubation to the pricing of derivative securities. Physica A 342 (2004) 677692. CrossRef
Decamps, M., Goovaerts, M. and Schoutens, W., Self Exciting Threshold Interest Rates Model. Int. J. Theor. Appl. Finance 9 (2006) 10931122. CrossRef
Étoré, P., On random walk simulation of one-dimensional diffusion processes with discontinuous coefficients. Electron. J. Probab. 11 (2006) 249275. CrossRef
P. Étoré, Approximation de processus de diffusion à coefficients discontinus en dimension un et applications à la simulation. Ph.D. thesis, Université Henri Poincaré, Nancy, France (2006).
O. Faugeras, F. Clément, R. Deriche, R. Keriven, T. Papadopoulo, J. Roberts, T. Viéville, F. Devernay, J. Gomes, G. Hermosillo, P. Kornprobst and D. Lingrand, The inverse EEG and MEG problems: The adjoint state approach I: The continuous case. INRIA research report RR-3673 (1999).
M. Freidlin and A.D. Wentzell, Necessary and Sufficient Conditions for Weak Convergence of One-Dimensional Markov Processes. Festschrift dedicated to 70th Birthday of Professor E.B. Dynkin, Birkhäuser (1994) 95–109.
V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer (1994).
P.E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992).
A. Lejay, Méthodes probabilistes pour l'homogénéisation des opérateurs sous forme divergence: cas linéaires et semi-linéaires. Ph.D. thesis, Université de Provence, Marseille, France (2000).
Lejay, A., Stochastic Differential Equations Driven by Processes Generated by Divergence Form Operators I: A Wong-Zakai Theorem. ESAIM Probab. Stat. 10 (2006) 356379. CrossRef
Lejay, A. and Martinez, M., A scheme for simulating one-dimensional diffusion processes with discontinuous coefficients. Annals Appl. Probab. 16 (2006) 107139. CrossRef
M. Martinez, Interprétations probabilistes d'opérateurs sous forme divergence et analyse de méthodes numériques probabilistes associées. Ph.D. thesis, Université de Provence, Marseille, France (2004).
Martinez, M. and Talay, D., Discrétisation d'équations différentielles stochastiques unidimensionnelles à générateur sous forme divergence avec coefficient discontinu. C.R. Acad. Sci. Paris 342 (2006) 5156. CrossRef
H. Owhadi and L. Zhang, Metric based upscaling. Commun. Pure Appl. Math. (to appear).
Ramirez, J.M., Thomann, E.A., Waymire, E.C., Haggerty, R. and Wood, B., A generalized Taylor-Aris formula and Skew Diffusion. Multiscale Model. Simul. 5 (2006) 786801. CrossRef
D. Revuz and M. Yor, Continuous Martingale and Brownian Motion. Springer, Heidelberg (1991).
Rozkosz, A., Weak convergence of Diffusions Corresponding to Divergence Form Operators. Stochastics Stochastics Rep. 57 (1996) 129157. CrossRef
D.W. Stroock, Diffusion semigroups corresponding to uniformly elliptic divergence form operators. Springer, Lecture Notes in Mathematics, Seminaire de Probabilités XXII 1321 (1988) 316–347.
Stroock, D.W. and Zheng, W., Markov chain approximations to symmetric diffusions. Ann. Inst. H. Poincaré Probab. Statist. 33 (1997) 619649. CrossRef
Zhikov, V.V., Kozlov, S.M., Oleinik, O.A. and T'en Ngoan, K., Averaging and G-convergence of Differential Operators. Russian Math. Survey 34 (1979) 69147. CrossRef
Zhikov, V.V., Kozlov, S.M. and Oleinik, O.A., G-convergence of Parabolic Operators. Russian Math. Survey 36 (1981) 960. CrossRef