Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T19:36:21.564Z Has data issue: false hasContentIssue false

Approximation of the Snell Envelope and AmericanOptions Prices in dimension one

Published online by Cambridge University Press:  15 November 2002

Vlad Bally
Affiliation:
Université du Maine, Laboratoire Statistiques et Processus, BP. 535, 72017 Le Mans Cedex, France; [email protected].
Bruno Saussereau
Affiliation:
Université de Franche-Comté, Laboratoire de Mathématiques de Besançon, 16 route de Gray, 25000 Besançon, France; [email protected].
Get access

Abstract

We establish some error estimates for the approximation of anoptimal stopping problem along the paths of the Black–Scholesmodel. This approximation is based on a tree method. Moreover, wegive a global approximation result for the related obstacleproblem.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baiocchi, C. and Pozzi, G.A., Error estimates and free-boundary convergence for a finite-difference discretization of a parabolic variational inequality. RAIRO Anal. Numér./Numer. Anal. 11 (1977) 315-340. CrossRef
V. Bally, M.E. Caballero and B. Fernandez, Reflected BSDE's, PDE's and Variational Inequalities. J. Theoret. Probab.(submitted).
A. Bensoussans and J.-L. Lions, Applications of the Variational Inequalities in Stochastic Control. North Holland (1982).
A.N. Borodin and P. Salminen, Handbook of Brownian Motion Facts and Formulae. Birkhauser (1996).
Broadie, M. and Detemple, J., American option valuation: New bounds, approximations, and a comparison of existing methods. Rev. Financial Stud. 9 (1995) 1211-1250. CrossRef
El Karoui, N., Kapoudjan, C., Pardoux, E., Peng, S. and Quenez, M.C., Reflected Solutions of Backward Stochastic Differential Equations and related Obstacle Problems for PDE's. Ann. Probab. 25 (1997) 702-737.
W. Feller, An Introduction to Probability Theory and its Applications, Vol. II. John Wiley and Sons (1966).
Lamberton, D., Error Estimates for the Binomial Approximation of American Put Options. Ann. Appl. Probab. 8 (1998) 206-233.
D. Lamberton, Brownian optimal stopping and random walks, Preprint 03/98. Université de Marne-la-Vallée (1998).
Lamberton, D. and Pagès, G., Sur l'approximation des réduites. Ann. Inst. H. Poincaré Probab. Statist. 26 (1990) 331-335.
D. Lamberton and C. Rogers, Optimal Stopping and Embedding, Preprint 17/99. Université de Marne-la-Vallée (1999).
D. Revuz and M. Yor, Continuous Martingales and Brownian Motion. Springer Verlag, Berlin Heidelberg (1991).
A.W. Roberts and D.E. Varberg, Convex Functions. Academic Press, New York (1973).
B. Saussereau, Sur une classe d'équations aux dérivées partielles. Ph.D. Thesis of the University of Le Mans, France (2000).