Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T17:38:42.292Z Has data issue: false hasContentIssue false

Analysis of the Rosenblatt process

Published online by Cambridge University Press:  23 January 2008

Ciprian A. Tudor*
Affiliation:
SAMOS/MATISSE, Centre d'Économie de La Sorbonne, Université de Panthéon-Sorbonne Paris 1, 90, rue de Tolbiac, 75634 Paris cedex 13, France; [email protected]
Get access

Abstract

We analyze the Rosenblatt process which is a selfsimilar process with stationary increments and which appears aslimit in the so-called Non Central Limit Theorem (Dobrushin and Majòr (1979), Taqqu (1979)). This process isnon-Gaussian and it lives in the second Wiener chaos. We give its representation as a Wiener-Itô multiple integral withrespect to the Brownian motion on a finite interval and we develop a stochastic calculus with respect to it by using both pathwise type calculus and Malliavin calculus.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abry, P. and Pipiras, V., Wavelet-based synthesis of the Rosenblatt process. Signal Process. 86 (2006) 23262339. CrossRef
Albin, J.M.P., A note on the Rosenblatt distributions. Statist. Probab. Lett. 40 (1998) 8391. CrossRef
Albin, J.M.P., On extremal theory for self similar processes. Ann. Probab. 26 (1998) 743793. CrossRef
Alòs, E., Mazet, O. and Nualart, D., Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29 (2001) 766801.
Alòs, E. and Nualart, D., Stochastic integration with respect to the fractional Brownian motion. Stoch. Stoch. Rep. 75 (2003) 129152. CrossRef
Androshuk, T. and Mishura, Y., Mixed Brownian-fractional Brownian model: absence of arbitrage and related topics. Stochastics An Int. J. Probability Stochastic Processes 78 (2006) 281300. CrossRef
F. Biagini, M. Campanino and S. Fuschini, Discrete approximation of stochastic integrals with respect of fractional Brownian motion of Hurst index H > 1/2 Preprint University of Bologna (2005).
Cheridito, P., Kawaguchi, H. and Maejima, M., Fractional Ornstein-Uhlenbeck processes. Electron. J. Probab. 8 (2003) 114. CrossRef
Decreusefond, L. and Ustunel, A.S., Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 (1998) 177214. CrossRef
G. da Prato and J. Zabczyk, Stochastic equations in infinite dimensions. Cambridge University Press (1992).
Dobrushin, R.L. and Major, P., Non-central limit theorems for non-linear functionals of Gaussian fields. Z. Wahrscheinlichkeitstheorie verw. Gebiete 50 (1979) 2752. CrossRef
A. Drewitz, Mild solutions to stochastic evolution equations with fractional Brownian motion. Diploma thesis at TU Darmstadt (2005).
P. Embrechts and M. Maejima, Selfsimilar processes. Princeton University Press, Princeton, New York (2002).
Fox, R. and Taqqu, M.S., Multiple stochastic integrals with dependent integrators. J. Mult. Anal. 21 (1987) 105127. CrossRef
V. Goodman and J. Kuelbs, Gaussian chaos and functional law of the ierated logarithm for Itô-Wiener integrals. Ann. I.H.P., Section B 29 (1993) 485–512.
M. Gradinaru, I. Nourdin, F. Russo and P. Vallois, m-order integrals and generalized Itôs formula; the case of a fractional Brownian motion with any Hurst parameter. Preprint, to appear in Annales de l'Institut Henri Poincaré (2003).
Gradinaru, M., Nourdin, I. and Tindel, S., Ito's and Tanaka's type formulae for the stochastic heat equation. J. Funct. Anal. 228 (2005) 114143. CrossRef
Hall, P., Hardle, W., Kleinow, T. and Schmidt, P., Semiparametric Bootstrap Approach to Hypothesis tests and Confidence intervals for the Hurst coefficient. Stat. Infer. Stoch. Process. 3 (2000) 263276. CrossRef
M. Jolis and M. Sanz, Integrator properties of the Skorohod integral. Stochastics and Stochastics Reports 41 (1992) 163–176.
Kallenberg, O., On an independence criterion for multiple Wiener integrals. Ann. Probab. 19 (1991) 483485. CrossRef
H. Kettani and J. Gubner, Estimation of the long-range dependence parameter of fractional Brownian motionin, in Proc. 28th IEEE LCN03 (2003).
Kruk, I., Russo, F. and Tudor, C.A., Wiener integrals, Malliavin calculus and covariance measure structure. J. Funct. Anal. 249 (2007) 92142. CrossRef
Leonenko, N.N. and Ahn, V.V., Rate of convergence to the Rosenblatt distribution for additive functionals of stochastic processes with long-range dependence. J. Appl. Math. Stoch. Anal. 14 (2001) 2746. CrossRef
N.N. Leonenko and W. Woyczynski, Scaling limits of solutions of the heat equation for singular Non-Gaussian data. J. Stat. Phys. 91 423–438.
Maejima, M. and Tudor, C.A., Wiener integrals with respect to the Hermite process and a non central limit theorem. Stoch. Anal. Appl. 25 (2007) 10431056. CrossRef
Mocioalca, O. and Viens, F., Skorohod integration and stochastic calculus beyond the fractional Brownian scale. J. Funct. Anal. 222 (2004) 385434. CrossRef
Norros, I., Valkeila, E. and Virtamo, J., An elementary approach to a Girsanov formula and other analytical results for fractional Brownian motion. Bernoulli 5 (1999) 571587. CrossRef
I. Nourdin, A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one. Séminaire de Probabilités XLI (2006). To appear.
D. Nualart, Malliavin Calculus and Related Topics. Springer (1995).
Nualart, D. and Zakai, M., Generalized mulptiple stochastic integrals and the representation of Wiener functionals. Stochastics 23 (1987) 311330.
Pipiras, V., Wavelet type expansion of the Rosenblatt process. J. Fourier Anal. Appl. 10 (2004) 599634. CrossRef
Pipiras, V. and Taqqu, M., Convergence of weighted sums of random variables with long range dependence. Stoch. Process. Appl. 90 (2000) 157174. CrossRef
Pipiras, V. and Murad Taqqu, Integration questions related to the fractional Brownian motion. Probab. Theor. Relat. Fields 118 (2001) 251281. CrossRef
Privault, N. and Tudor, C.A., Skorohod and pathwise stochastic calculus with respect to an L 2-process. Rand. Oper. Stoch. Equ. 8 (2000) 201204. CrossRef
Z. Qian and T. Lyons, System control and rough paths. Clarendon Press, Oxford (2002).
M. Rosenblatt, Independence and dependence. Proc. 4th Berkeley Symposium on Math, Stat. II (1961) 431–443.
Russo, F. and Vallois, P., Forward backward and symmetric stochastic integration. Probab. Theor. Relat. Fields 97 (1993) 403421. CrossRef
Russo, F. and Vallois, P., Stochastic calculus with respect to a finite quadratic variation process. Stoch. Stoch. Rep. 70 (2000) 140. CrossRef
F. Russo and P. Vallois, Elements of stochastic calculus via regularization. Preprint, to appear in Séminaire de Probabilités (2006).
G. Samorodnitsky and M. Taqqu, Stable Non-Gaussian random variables. Chapman and Hall, London (1994).
Üstunel, A.S. and Zakai, M., On independence and conditioning on Wiener space. Ann. Probab. 17 (1989) 14411453. CrossRef
Taqqu, M., Weak convergence to the fractional Brownian motion and to the Rosenblatt process. Z. Wahrscheinlichkeitstheorie verw. Gebiete 31 (1975) 287302. CrossRef
Taqqu, M., Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitstheorie verw. Gebiete 50 (1979) 5383. CrossRef
M. Taqqu, A bibliographical guide to selfsimilar processes and long-range dependence. Dependence in Probability and Statistics, Birkhauser, Boston (1986) 137–162.
Tindel, S., Tudor, C.A. and Viens, F., Stochastic evolution equations with fractional Brownian motion. Probab. Theor. Relat. Fields. 127 (2003) 186204. CrossRef
Tudor, C.A., Itô's formula for the infinite-dimensional fractional Brownian motion. J. Math. Kyoto University 45 (2005) 531546. CrossRef
Unit, W.B. Wu root testing for functionals of linear processes. Econ. Theory 22 (2005) 114.