Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T16:18:14.318Z Has data issue: false hasContentIssue false

Stability of solutions of BSDEs with random terminal time

Published online by Cambridge University Press:  09 March 2006

Sandrine Toldo*
Affiliation:
IRMAR, Université Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France; [email protected]
Get access

Abstract

In this paper, we study the stability of the solutions of Backward Stochastic Differential Equations (BSDE for short) with an almost surelyfinite random terminal time. More precisely, we are going to show that if (Wn ) is a sequence of scaled random walks or a sequence of martingales that converges to a Brownian motion W and if $(\tau^n)$ is a sequence of stopping times that converges to a stopping time τ, then the solution of the BSDE driven by Wn with random terminal time $\tau^n$ converges to the solution of the BSDE driven by W with random terminal time τ.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonelli, F. and Kohatsu-Higa, A., Filtration stability of backward SDE's. Stochastic Anal. Appl. 18 (2000) 1137. CrossRef
P. Billingsley, Convergence of Probability Measures, Second Edition. Wiley and Sons, New York (1999).
Briand, P., Delyon, B. and Mémin, J., Donsker-type theorem for BSDEs. Electron. Comm. Probab. 6 (2001) 114 (electronic). CrossRef
Briand, P., Delyon, B. and Mémin, J., On the robustness of backward stochastic differential equations. Stochastic Process. Appl. 97 (2002) 229253. CrossRef
K.L. Chung and Z.X. Zhao, From Brownian motion to Schrödinger's equation, Springer-Verlag, Berlin Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 312 (1995).
Coquet, F., Mackevičius, V. and Mémin, J., Stability in D of martingales and backward equations under discretization of filtration. Stochastic Process. Appl. 75 (1998) 235248. CrossRef
Coquet, F., Mackevičius, V. and Mémin, J., Corrigendum to: “Stability in D of martingales and backward equations under discretization of filtration”. Stochastic Process. Appl. 82 (1999) 335338. CrossRef
F. Coquet, J. Mémin and L. Słomiński, On weak convergence of filtrations. Séminaire de probabilités XXXV, Springer-Verlag, Berlin Heidelberg New York, Lect. Notes Math. 1755 (2001) 306–328. CrossRef
J. Haezendonck and F. Delbaen, Caractérisation de la tribu des événements antérieurs à un temps d'arrêt pour un processus stochastique. Acad. Roy. Belg., Bulletin de la Classe Scientifique 56 (1970) 1085–1092.
Hoover, D.N., Convergence in distribution and Skorokhod convergence for the general theory of processes. Probab. Theory Related Fields 89 (1991) 239259. CrossRef
J. Jacod and A.N. Shiryaev, Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin Heidelberg New York (1987).
I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Second Edition. Springer-Verlag, Berlin Heidelberg New York (1991).
Ma, J., Protter, P., San Martín, J. and Torres, S., Numerical method for backward stochastic differential equations. Ann. Appl. Probab. 12 (2002) 302316.
Peng, S., Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stoch. Stoch. Rep. 37 (1991) 6174.
Royer, M., BSDEs with a random terminal time driven by a monotone generator and their links with PDEs. Stoch. Stoch. Rep. 76 (2004) 281307. CrossRef