Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T15:33:27.106Z Has data issue: false hasContentIssue false

A scale-space approach with wavelets to singularity estimation

Published online by Cambridge University Press:  15 November 2005

Jérémie Bigot*
Affiliation:
Laboratoire de Statistique et Probabilités, Université Paul Sabatier, Toulouse, France; [email protected]
Get access

Abstract

This paper is concerned with the problem of determining the typical features of a curve when it is observed with noise. It has been shown that one can characterize the Lipschitz singularities of a signal by following the propagation across scales of the modulus maxima of its continuous wavelet transform. A nonparametric approach, based on appropriate thresholding of the empirical wavelet coefficients, is proposed to estimate the wavelet maxima of a signal observed with noise at various scales. In order to identify the singularities of the unknown signal, we introduce a new tool, “the structural intensity”, that computes the “density” of the location of the modulus maxima of a wavelet representation along various scales. This approach is shown to be an effective technique for detecting the significant singularities of a signal corrupted by noise and for removing spurious estimates. The asymptotic properties of the resulting estimators are studied and illustrated by simulations. An application to a real data set is also proposed.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antoniadis, A., Bigot, J. and Sapatinas, T., Wavelet estimators in nonparametric regression: a comparative simulation study. J. Statist. Software 6 (2001) 183. CrossRef
Antoniadis, A. and Gijbels, I., Detecting abrupt changes by wavelet methods. J. Nonparam. Statist 14 (2001) 729. CrossRef
Arneodo, A., Bacry, E., Jaffard, S. and Muzy, J.F., Oscillating singularities and fractal functions, in Spline functions and the theory of wavelets (Montreal, PQ, 1996), Amer. Math. Soc., Providence, RI. CRM Proc. Lect. Notes 18 (1999) 315329.. CrossRef
Arneodo, A., Bacry, E., Jaffard, S. and Muzy, J.F., Singularity spectrum of multifractal functions involving oscillating singularities. J. Fourier Anal. Appl. 4 (1998) 159174. CrossRef
Arneodo, A., Bacry, E., Jaffard, S. and Muzy, J.F., Oscillating singularities on Cantor sets: a grand-canonical multifractal formalism. J. Statist. Phys. 87 (1997) 179209. CrossRef
Arneodo, A., Bacry, E. and Muzy, J.F., The thermodynamics of fractals revisited with wavelets. Physica A 213 (1995) 232275. CrossRef
Bacry, E., Muzy, J.F. and Arneodo, A., Singularity spectrum of fractal signals: exact results. J. Statist. Phys. 70 (1993) 635674. CrossRef
J. Bigot, Automatic landmark registration of 1D curves, in Recent advances and trends in nonparametric statistics, M. Akritas and D.N. Politis Eds., Elsevier (2003) 479–496.
J. Bigot, Landmark-based registration of 1D curves and functional analysis of variance with wavelets. Technical Report TR0333, IAP (Interuniversity Attraction Pole network) (2003).
Breiman, L., Bagging Predictors. Machine Learning 24 (1996) 123140.
Brown, L.D. and Asymptotic, M.G. Lo equivalence of nonparametric regression and white noise. Ann. Statist. 3 (1996) 23842398.
Chaudhuri, P. and J.S.Marron, SiZer for exploration of structures in curves. J. Am. Statist. Ass. 94 (1999) 807823. CrossRef
P. Chaudhuri and J.S. Marron Scale space view of curve estimation. Ann. Statist. 28 (2000) 408–428.
Coifman, R.R. and Donoho, D.L., Translation-invariant de-noising, in Wavelets and Statistics, A. Antoniadis and G. Oppenheim, Eds., New York: Springer-Verlag. Lect. Notes Statist. 103 (1995) 125150. CrossRef
I. Daubechies, Ten Lectures on Wavelets. Philadelphia, SIAM (1992).
Donoho, D.L. and Johnstone, I.M., Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 (1994) 425455. CrossRef
Donoho, D.L. and Johnstone, I.M., Adapting to unknown smoothness via wavelet shrinkage. J. Am. Statist. Ass. 90 (1995) 12001224. CrossRef
Donoho, D.L. and Johnstone, I.M., Minimax estimation via wavelet shrinkage. Ann. Statist. 26 (1998) 879921.
Donoho, D.L. and Johnstone, I.M., Asymptotic minimality of wavelet estimators with sampled data. Stat. Sinica 9 (1999) 132.
Donoho, D.L., Johnstone, I.M., Kerkyacharian, G. and Picard, D., Wavelet shrinkage: Asymptotia? (with discussion). J. R. Statist. Soc. B 57 (1995) 301337.
Fisher, N.I. and Marron, J.S., Mode testing via the excess mass estimate. Biometrika 88 (2001) 499517. CrossRef
Gasser, T. and Kneip, A., Searching for Structure in Curve Samples. J. Am. Statist. Ass. 90 (1995) 11791188.
B. Hummel and R. Moniot, Reconstruction from zero-crossings in scale-space. IEEE Trans. Acoust., Speech, and Signal Proc. 37 (1989) 2111–2130.
S. Jaffard, Mathematical Tools for Multifractal Signal Processing. Signal Processing for Multimedia, J.S Byrnes Ed., IOS Press (1999) 111–128.
Kneip, A. and Gasser, T., Statistical tools to analyze data representing a sample of curves. Ann. Statist. 20 (1992) 12661305. CrossRef
M.R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag (1983).
T. Lindeberg, Scale Space Theory in Computer Vision. Kluwer, Boston (1994).
Mallat, S., Zero-Crossings of a Wavelet Transform. IEEE Trans. Inform. Theory 37 (1991) 10191033. CrossRef
S. Mallat, A Wavelet Tour of Signal Processing. Academic Press (1998).
Mallat, S. and Hwang, W.L., Singularity Detection and Processing with Wavelets. IEEE Trans. Inform. Theory 38 (1992) 617643. CrossRef
Mallat, S. and Zhong, S., Characterization of Signals From Multiscale Egde. IEEE Trans. Pattern Anal. Machine Intelligence 14 (1992) 710732. CrossRef
S. Mallat and S. Zhong, Wavelet Transformation Maxima and Multiscale Edges, in Wavelets: A Tutorial in Theory and Applications, C.K. Chui Ed. Boston, Academic Press (1992) 66–104.
S. Mallat and S. Zhong, Wavelet Maxima Representation, in Wavelets and Applications, Y. Meyer Ed. New York, Springer-Verlag (1992) 207–284.
Minnotte, M.C. and Scott, D.W., The mode tree: a tool for visualization of nonparametric density features. J. Computat. Graph. Statist. 2 (1993) 5168.
Minnotte, M.C., Marchette, D.J. and Wegman, E.J., The bumpy road to the mode forest. J. Comput. Graph. Statist. 7 (1998) 239251.
Misiti, M., Misiti, Y., Oppenheim, G. and Poggi, J.-M., Décomposition en ondelettes et méthodes comparatives : étude d'une courbe de charge éléctrique. Revue de Statistique Appliquée 17 (1994) 5777.
Muzy, J.F., Bacry, E. and Arneodo, A., The multifractal formalism revisited with wavelets. Int. J. Bif. Chaos 4 (1994) 245302. CrossRef
Picard, D. and Tribouley, K., Adaptive confidence interval for pointwise curve estimation. Ann. Statist. 28 (2000) 298335.
Raimondo, M., Minimax estimation of sharp change points. Ann. Statist. 26 (1998) 13791397.
Ramsay, J.O. and Curve, X. Li registration. J. R. Statist. Soc. B 60 (1998) 351363. CrossRef
J.O. Ramsay and B.W. Silverman, Functional data analysis. New York, Springer Verlag (1997).
Y. Raviv and N. Intrator, Bootstrapping with Noise: An Effective Regularization Technique. Connection Science, Special issue on Combining Estimator 8 (1996) 356–372.
Unser, M., Aldroubi, A. and On, M. Eden the Asymptotic Convergence of B-Spline Wavelets to Gabor Functions. IEEE Trans. Inform. Theory 38 (1992) 864872. CrossRef
Wang, Y., Jump and Sharp Cusp Detection by Wavelets. Biometrica 82 (1995) 385397. CrossRef
Wang, K. and Gasser, T., Alignment of curves by dynamic time warping. Ann. Statist. 25 (1997) 12511276.
Wang, K. and Gasser, T., Synchronizing sample curves nonparametrically. Ann. Statist. 27 (1999) 439460. CrossRef
Wang, Y.P. and Lee, S.L., Scale-Space Derived From B-Splines. IEEE Trans. on Pattern Analysis and Machine Intelligence 20 (1998) 10401055. CrossRef
L. Younes, Deformations, Warping and Object Comparison. Tutorial (2000) http://www.cmla.ens-cachan.fr/~younes.
Yuille, A.L. and Poggio, T.A., Scaling Theorems for Zero Crossings. IEEE Trans. Pattern Anal. Machine Intelligence 8 (1986) 1525. CrossRef