Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T15:07:56.868Z Has data issue: false hasContentIssue false

Necessary and sufficient condition for the existence of a Fréchet mean on the circle

Published online by Cambridge University Press:  04 November 2013

Benjamin Charlier*
Affiliation:
Institut de Mathématiques de Toulouse Université de Toulouse et CNRS (UMR 5219), F-31062 Toulouse, France. [email protected]
Get access

Abstract

Let (\hbox{$\mathbb{S}^1, d_{\mathbb{S}^1}$}S1,dS1) be the unit circle inℝ2 endowed with the arclength distance. We give a sufficient and necessary condition for a general probability measure μ to admit a well defined Fréchet mean on (\hbox{$\mathbb{S}^1,d_{\mathbb{S}^1}$}S1,dS1). We derive a new sufficient condition of existence P(α, ϕ) with no restriction on the support of the measure. Then, we study the convergence of the empirical Fréchet mean to the Fréchet mean and we give an algorithm to compute it.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afsari, B., Riemannian L p center of mass: existence, uniqueness, and convexity. Proc. Amer. Math. Soc. 139 (2011) 655673. Google Scholar
Bhattacharya, R. and Patrangenaru, V., Large sample theory of intrinsic and extrinsic sample means on manifolds, I. Ann. Stat. 31 (2003) 129. Google Scholar
Buss, R.S. and Fillmore, J.P., Spherical averages and applications to spherical splines and interpolation. ACM Trans. Graph. 20 (2001) 95126. Google Scholar
Corcuera, J.M. and Kendall, W.S., Riemannian barycentres and geodesic convexity. Math. Proc. Cambridge Philos. Soc. 127 (1999) 253269. Google Scholar
M. Émery and G. Mokobodzki, Sur le barycentre d’une probabilité dans une variété, in Séminaire de Probabilités, XXV, vol. 1485 of Lect. Notes Math. (1991) 220–233.
N.I. Fisher, Statistical analysis of circular data. Cambridge University Press, Cambridge (1993).
Fréchet, M., Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. Henri Poincaré 10 (1948) 215310. Google Scholar
Karcher, H., Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30 (1977) 509541. Google Scholar
Kaziska, D. and Srivastava, A., The karcher mean of a class of symmetric distributions on the circle. Stat. Probab. Lett. 78 (2008) 13141316 (2008). Google Scholar
D.G. Kendall, D. Barden, T.K. Carne and H. Le, Shape and shape theory. Wiley Series in Probability and Statistics. John Wiley & Sons Ltd., Chichester (1999).
Le, H., On the consistency of procrustean mean shapes. Adv. Appl. Probab. 30 (1998) 5363. Google Scholar
Le, H., Locating Fréchet means with application to shape spaces. Adv. Appl. Probab. 33 (2001) 324338. Google Scholar
Le, H., Estimation of Riemannian barycentres. LMS J. Comput. Math. 7 (2004) 193200. Google Scholar
K.V. Mardia and P.E. Jupp, Directional statistics. Wiley Series in Probability and Statistics. John Wiley & Sons Ltd., Chichester (2000). Revised reprint of ıt Statistics of directional data by Mardia [ MR0336854 (49 #1627)].
Massart, P., The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18 (1990) 12691283. Google Scholar
Oller, J.M. and Corcuera, J.M., Intrinsic analysis of statistical estimation. Ann. Statist. 23 (1995) 15621581. Google Scholar
Pennec, X., Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. J. Math. Imaging Vision 25 (2006) 127154. Google Scholar
H. Ziezold, On expected figures and a strong law of large numbers for random elements in quasi-metric spaces, in Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes and of the Eighth European Meeting of Statisticians (Tech. Univ. Prague, Prague, 1974). Reidel, Dordrecht (1977) 591–602.