Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T13:15:05.632Z Has data issue: false hasContentIssue false

Minimax nonparametric hypothesis testingfor ellipsoids and Besov bodies

Published online by Cambridge University Press:  15 August 2002

Yuri I. Ingster
Affiliation:
St. Petersburg Transport University, Department of Applied Mathematics, Moskowskii Av. 9, 190031 St. Petersburg, Russia; [email protected].
Irina A. Suslina
Affiliation:
St. Petersburg Institute of Exact Mechanics and Optics, Technical University, Sablinskaya Str. 14, 197101 St. Petersburg, Russia; [email protected].
Get access

Abstract

We observe an infinitely dimensional Gaussian random vector x = ξ + vwhereξ is a sequence of standard Gaussian variables and v ∈ l2 is anunknownmean. We consider the hypothesis testing problem H0 : v = 0versusalternatives $H_{\varepsilon,\tau}:v\in V_{\varepsilon}$ for the sets $V_{\varepsilon}=V_{\varepsilon}(\tau,\rho_{\varepsilon})\subset l_2$ .The sets Vε are l q -ellipsoidsof semi-axes ai = i-s R/ε with l p -ellipsoidof semi-axes bi = i-r pε removed orsimilar Besov bodies Bq,t;s (R/ε) with Besovbodies Bp,h;r (pε/ε) removed. Here $\tau =(\kappa,R)$ or $\tau =(\kappa,h,t,R);\ \\kappa=(p,q,r,s)$ are the parameters which define thesets Vε for given radii pε → 0,0 < p,q,h,t ≤ ∞, -∞ ≤ r,s ≤ ∞, R > 0; ε → 0 is theasymptotical parameter.We study the asymptotics of minimaxsecond kind errors $\beta_{\varepsilon}(\alpha)=\beta(\alpha, V_{\varepsilon}(\tau,\rho_{\varepsilon}))$ and construct asymptotically minimax or minimax consistent families oftests $\psi_{\alpha;\varepsilon,\tau,\rho_{\varepsilon}}$ , if it is possible.We describe the partition of the set of parameters κ into regions withdifferent types of asymptotics: classical, trivial, degenerate and Gaussian(of various types).Analogous rates have been obtained in a signal detectionproblem for continuous variant of white noise model: alternativescorrespond to Besov or Sobolev balls with Besov or Sobolev balls removed.The study is based on an extension of methods of constructions ofasymptotically least favorable priors.These methods are applicable to wide class of “convex separablesymmetrical" infinite-dimensional hypothesis testingproblems in white Gaussian noise model. Under some assumptionsthese methodsare based on the reduction of hypothesis testing problemto convex extreme problem: to minimize specially defined Hilbert normover convex sets of sequences $\bar{\pi}$ of measures πi on thereal line. The study of this extreme problem allows to obtain differenttypes of Gaussian asymptotics.If necessary assumptions do not hold, then we obtain other types ofasymptotics.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burnashev, M.V., On the minimax detection of an inaccurately known signal in a Gaussian noise background. Theory Probab. Appl. 24 (1979) 107-119. CrossRef
Cohen, A., Daubechies, I., Jewerth, B. and Vial, P., Multiresolution analysis, wavelets and fast algorithms on an interval. C. R. Acad. Sci. Paris (A) 316 (1993) 417-421.
Cohen, A., Daubechies, I. and Vial, P., Wavelets on an interval and fast wavelet transforms. Appl. Comput. Harmon. Anal. 1 (1993) 54-81. CrossRef
D.L. Donoho and I.M. Johnstone, Minimax estimation via wavelet shrinkage. Technical Report 402 Dep. of Statistics, Stanford University (1992).
D.L. Donoho, I.M. Johnstone, G. Kerkyacharian and D. Picard, Wavelet shrinkage: Asymptopia? J. Roy. Statist. Soc. 57 (1995) 301-369.
Ermakov, M.S., Minimax detection of a signal in a Gaussian white noise. Theory Probab. Appl. 35 (1990) 667-679. CrossRef
Ibragimov, I.A. and Khasminskii, R.Z., One problem of statistical estimation in a white Gaussian noise. Soviet Math. Dokl. 236 (1977) 1351-1354.
I.A. Ibragimov and R.Z. Khasminskii, Statistical Estimation: Asymptotic Theory. Springer, Berlin-New York (1981).
Yu.I. Ingster, Minimax nonparametric detection of signals in white Gaussian noise. Problems Inform. Transmission 18 (1982) 130-140.
Yu.I. Ingster, Minimax testing of nonparametric hypotheses on a distribution density in L p -metrics. Theory Probab. Appl. 31 (1986) 333-337.
Yu.I. Ingster, Minimax detection of a signals in l p -metrics. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 184 (1990) 152-168 [in Russian, Transl: J. Soviet. Math. 68 (1994) 4].
Yu.I. Ingster, Asymptotically minimax hypothesis testing for nonparametric alternatives. I, II, III. Math. Methods Statist. 2 (1993) 85-114, 171-189, 249-268.
Yu.I. Ingster, Minimax hypotheses testing for nondegenerate loss functions and extreme convex problems. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 228 (1996) 162-188 (in Russian).
Yu.I. Ingster, Some problems of hypothesis testing leading to infinitely divisible distributions. Math. Methods Statist. 6 (1997) 47-69.
Yu.I. Ingster, Adaptation in Minimax Nonparametric Hypothesis Testing for ellipsoids and Besov bodies. Technical Report 419, Weierstrass Institute, Berlin (1998).
Yu.I. Ingster, I.A. Suslina, Minimax signal detection for Besov balls and bodies. Problems Inform. Transmission 34 (1998) 56-68.
O.V. Lepski, On asymptotical exact testing of nonparametric hypotheses. CORE D.P. 9329, Université Catholique de Louvain (1993).
Lepski, O.V., Mammen, E. and Spokoiny, V.G., Optimal spatial adaptation to ingomogeneous smoothness: An approach based on kernal estimates with variable bandwidth selectors. Ann. Statist. 25 (1997) 929-947.
Lepski, O.V. and Spokoiny, V.G., Minimax nonparametric hypothesis testing: the case of an inhomogeneous alternative. Bernoulli 5 (1999) 333-358. CrossRef
O.V. Lepski and A.B. Tsybakov, Asymptotically exact nonparametric hypothesis testing in sup-norm and at a fixed point. Discussion Paper 91, Humboldt-Univ., Berlin. Probab. Theory Related Fields (to be published).
Y. Meyer, Ondlettes. Herrmann, Paris (1990).
Pinsker, M.S., Optimal filtration of square-integrable signals in Gaussian noise. Problems Inform. Transmission 16 (1980) 120-133.
Sion, M., On general minimax theorems. Pacific J. Math. 58 (1958) 171-176. CrossRef
Spokoiny, V.G., Adaptive hypothesis testing using wavelets. Ann. Stat. 24 (1996) 2477-2498.
Spokoiny, V.G., Adaptive and spatially adaptive testing of nonparametric hypothesis. Math. Methods Statist. 7 (1998) 245-273.
I.A. Suslina, Minimax detection of a signal for l q -ellipsoids with a removed l p -ball. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 207 (1993) 127-137 (in Russian).
I.A. Suslina, Extreme problems arising in minimax detection of a signal for l q -ellipsoids with a removed l p -ball. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 228 (1996) 312-332 (in Russian).