Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T14:11:59.306Z Has data issue: false hasContentIssue false

Local Asymptotic Normality Property for Lacunar Wavelet Series multifractal model*

Published online by Cambridge University Press:  05 January 2012

Jean-Michel Loubes
Affiliation:
Institut de Mathématique de Toulouse, France; [email protected]
Davy Paindaveine
Affiliation:
Université Libre de Bruxelles, Belgium.
Get access

Abstract

We consider a lacunar wavelet series function observed with an additive Brownian motion. Such functions are statistically characterized by twoparameters. The first parameter governs the lacunarity of the waveletcoefficients while the second one governs its intensity. In this paper,we establish the local and asymptotic normality (LAN) of the model, with respect to this couple of parameters. This enables to prove the optimality of an estimator for the lacunarity parameter, and to build optimal (in the Le Cam sense) tests on the intensity parameter.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arneodo, A., Bacry, E., Jaffard, S. and Muzy, J.F., Singularity spectrum of multifractal functions involving oscillating singularities. The Journal of Fourier Analysis and Applications 4 (1998) 159174. CrossRef
A. Arneodo, E. Bacry, S. Jaffard and J.F. Muzy, Oscillating singularities and fractal functions. In Spline functions and the theory of wavelets (Montreal, PQ, 1999) , Amer. Math. Soc. Providence, RI (1999) 315–329.
Aubry, J.M. and Jaffard, S., Random wavelet series. Comm. Math. Phys. 227 (2002) 483514. CrossRef
E. Bacry, A. Arneodo, U. Frisch, Y. Gagne and E. Hopfinger, Wavelet analysis of fully developed turbulence data and measurement of scaling exponents. In Turbulence and coherent structures (Grenoble, 1989) , Kluwer Acad. Publ. Dordrecht (1989) 203–215.
Chi, Z., Construction of stationary self-similar generalized fields by random wavelet expansion. Probab. Theory Related Fields 121 (2001) 269300. CrossRef
Durand, A., Random wavelet series based on a tree-indexed Markov chain. Comm. Math. Phys. 283 (2008) 451477. CrossRef
Flandrin, P., Wavelet analysis and synthesis of fractional Brownian Motion. IEEE Trans. Inform. Theory 38 (1992) 910917. CrossRef
F. Gamboa and J.-M. Loubes, Bayesian estimation of multifractal wavelet function. Bernoulli (2005) 34–57.
Gamboa, F. and Loubes, J.-M., Estimation of the parameters of a multifractal wavelet function. Test 16 (2007) 383407. CrossRef
Genovese, C. and Wasserman, L., Rates of convergence for the Gaussian mixture sieve. Ann. Statist. 28 (2000) 11051127.
Jaffard, S., On lacunary wavelet series. The Annals of Applied Probability 10 (2000) 313329.
Lindsay, B., The geometry of mixture likelihoods: a general theory. Ann. Statist. 11 (1983) 8694. CrossRef
G. McLachlan and K. Basford, Mixture models. Inference and applications to clustering. Statistics: Textbooks and Monographs 84. Marcel Dekker, Inc., New York (1988).
Mallat, S.G., Multiresolution approximations and wavelet orthonormal bases of L 2(r). Transactions of the American Mathematical Society 315 (1989) 6987.
McLeish, D.L. and Small, C.G., Likelihood methods for the discrimination problem. Biometrika 73 (1986) 397403. CrossRef
Y. Meyer, Ondelettes et Opérateurs . Hermann (1990).
Riedi, R.H., Crouse, M.S., Ribeiro, V.J. and Baraniuk, R.G., A multifractal wavelet model with application to network traffic. Institute of Electrical and Electronics Engineers. Transactions on Information Theory 45 (1999) 9921018. CrossRef
F. Roueff, Almost sure haussdorff dimensions of graphs of random wavelet series. J. Fourier Analysis and App. 9 (2003).
Swensen, A.R., The asymptotic distribution of the likelihood ratio for autoregressive time series with a regression trend. J. Multivariate Anal. 16 (1985) 5470. CrossRef
van de Geer, S., Rates of convergence for the maximum likelihood estimator in mixture models. J. Nonparametr. Statist. 6 (1996) 293310. CrossRef
A.W. van der Vaart, Asymptotic statistics . Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (1998). ISBN 0-521-49603-9; 0-521-78450-6.