Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T03:44:34.550Z Has data issue: false hasContentIssue false

Hölderian invariance principle for Hilbertian linear processes

Published online by Cambridge University Press:  04 July 2009

Alfredas Račkauskas
Affiliation:
Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, 2006 Vilnius, Lithuania; [email protected] Institute of Mathematics and Informatics, Akademijos str. 4, 08663 Vilnius, Lithuania
Charles Suquet
Affiliation:
Laboratoire P. Painlevé, UMR 8524 CNRS, Université Lille I, Bât. M2, Cité Scientifique, 59655 Villeneuve d'Ascq Cedex, France; [email protected]
Get access

Abstract

Let $(\xi_n)_{n\ge 1}$ be the polygonal partial sums processes built on the linear processes $X_n=\sum_{i\ge 0}a_i(\epsilon_{n-i})$ , n ≥ 1, where $(\epsilon_i)_{i\in\mathbb{Z}}$ are i.i.d., centered random elements in some separable Hilbert space $\mathbb{H}$ and the a i 's are bounded linear operators $\mathbb{H}\to \mathbb{H}$ , with $\sum_{i\ge 0}\lVert a_i\rVert<\infty$ . We investigate functional central limit theorem for $\xi_n$ in the Hölder spaces $\mathrm{H}^o_\rho(\mathbb{H})$ of functions $x:[0,1]\to\mathbb{H}$ such that ||x(t + h) - x(t)|| = o(p(h)) uniformly in t, where p(h) = hαL(1/h), 0 ≤ h ≤ 1 with 0 ≤ α ≤ 1/2 and L slowly varying at infinity. We obtain the $\mathrm{H}^o_\rho(\mathbb{H})$ weak convergence of $\xi_n$ to some $\mathbb{H}$ valued Brownian motion under the optimal assumption that for any c>0, $tP(\lVert \epsilon_0\rVert>ct^{1/2}\rho(1/t))=o(1)$ when t tends to infinity, subject to some mild restriction on L in the boundary case α = 1/2. Our result holds in particular with the weight functions p(h) = h1/2 lnβ(1/h), β > 1/2>.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular variation. Encyclopaedia of Mathematics and its Applications. Cambridge University Press (1987).
Dedecker, J. and Merlevède, F., The conditional central limit theorem in Hilbert spaces. Stoch. Process. Appl. 108 (2003) 229262. CrossRef
J. Dedecker, P. Doukhan, G. Lang, J.R. Leon, S. Louhichi and C. Prieur, Weak Dependence: With Examples and Applications, volume 190 of Lect. Notes Statist. Springer (2007).
Hamadouche, D., Invariance principles in Hölder spaces. Portugal. Math. 57 (2000) 127151.
Juodis, M., Račkauskas, A. and Suquet, Ch., Hölderian functional central limit theorems for linear processes. ALEA Lat. Am. J. Probab. Math. Stat. 5 (2009) 4764.
Kuelbs, J., The invariance principle for Banach space valued random variables. J. Multiv. Anal. 3 (1973) 161172. CrossRef
Lamperti, J., On convergence of stochastic processes. Trans. Amer. Math. Soc. 104 (1962) 430435. CrossRef
M. Ledoux and M. Talagrand, Probability in Banach Spaces. Springer-Verlag, Berlin, Heidelberg (1991).
Merlevède, F., Peligrad, M. and Utev, S., Sharp conditions for the CLT of linear processes in a Hilbert space. J. Theoret. Probab. 10 (1997) 681693. CrossRef
Merlevède, F., Peligrad, M. and Utev, S., Recent advances in invariance principles for stationary sequences. Probab. Surveys 3 (2006) 136. CrossRef
Račkauskas, A. and Suquet, Ch., Hölder versions of Banach spaces valued random fields. Georgian Math. J. 8 (2001) 347362.
Račkauskas, A. and Suquet, Ch., Necessary and sufficient condition for the Hölderian functional central limit theorem. J. Theoret. Probab. 17 (2004) 221243. CrossRef
Račkauskas, A. and Suquet, Ch., Hölder norm test statistics for epidemic change. J. Statist. Plann. Inference 126 (2004) 495520. CrossRef
Račkauskas, A. and Suquet, Ch., Central limit theorems in Hölder topologies for Banach space valued random fields. Theor. Probab. Appl. 49 (2004) 109125.
Račkauskas, A. and Suquet, Ch., Testing epidemic changes of infinite dimensional parameters. Stat. Inference Stoch. Process. 9 (2006) 111134. CrossRef
Talagrand, M., Isoperimetry and integrability of the sum of independent Banach-space valued random variables. Ann. Probab. 17 (1989) 15461570. CrossRef