Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T07:22:32.301Z Has data issue: false hasContentIssue false

Diffusions with measurement errors.II. Optimal estimators

Published online by Cambridge University Press:  15 August 2002

Arnaud Gloter
Affiliation:
G.R.A.P.E., UMR 5113 du CNRS, Université Montesquieu (Bordeaux), Avenue Léon Duguit, 33608 Pessac, France; [email protected].
Jean Jacod
Affiliation:
Laboratoire de Probabilités et Modèles Aléatoires, UMR 7599 du CNRS, Université Paris 6, 4 place Jussieu, 75252 Paris, France; [email protected].
Get access

Abstract

We consider a diffusion process X which is observed at times i/nfor i = 0,1,...,n, each observation being subject to a measurementerror. All errors are independent and centered Gaussian with knownvariance pn . There is an unknown parameter to estimate within thediffusion coefficient. In this second paper weconstruct estimators which are asymptotically optimal when theprocess X is a Gaussian martingale, and we conjecture that they arealso optimal in the general case.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

G. Dohnal, On estimating the diffusion coefficient. J. Appl. Probab. 24 (1987) 105-114.
V. Genon-Catalot and J. Jacod, On the estimation of the diffusion coefficient for multidimensional diffusion processes. Ann. Inst. H. Poincaré Probab. Statist. 29 (1993) 119-153.
A. Gloter and J. Jacod, Diffusion with measurement error. I. Local Asymptotic Normality (2000).
J. Jacod and A. Shiryaev, Limit Theorems for Stochastic Processes. Springer-Verlag, Berlin (1987).
J. Jacod, On continuous conditional Gaussian martingales and stable convergence in law, Séminaire Proba. XXXI. Springer-Verlag, Berlin, Lecture Notes in Math. 1655 (1997) 232-246. CrossRef
M.B. Malyutov and O. Bayborodin, Fitting diffusion and trend in noise via Mercer expansion, in Proc. 7th Int. Conf. on Analytical and Stochastic Modeling Techniques. Hamburg (2000).
Renyi, A., On stable sequences of events. Sankya Ser. A 25 (1963) 293-302.