Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T04:07:10.644Z Has data issue: false hasContentIssue false

Convex rearrangements of Lévy processes

Published online by Cambridge University Press:  31 March 2007

Youri Davydov
Affiliation:
Laboratoire Paul Painlevé - UMR 8524 université de Lille I, Bât. M2 59655, Villeneuve d'Ascq, France; [email protected]
Emmanuel Thilly
Affiliation:
Laboratoire GREMARS, EA 2459 université de Lille 3, Maison de la recherche BP 149, 59653 Villeneuve d'Ascq, France; [email protected]
Get access

Abstract

In this paper we study asymptotic behavior of convexrearrangements of Lévy processes. In particular weobtain Glivenko-Cantelli-type strong limit theorems for the convexifications when the corresponding Lévy measureis regularly varying at + with exponent α ∈ (1,2).

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J-M. Azaïs, M. Wschebor, Almost sure oscillation of certain random processes. Bernoulli 2 (1996) 257270. CrossRef
J. Bertoin, Lévy processes. Cambridge University Press (1998).
N.J. Bingham, C.M. Goldie and J.L. Teugels, Regular variation. Cambridge University Press (1987).
Csörgö, M., Gastwirth, J.L. and Zitikis, R., Asymptotic confidence bands for the Lorenz and Bonferroni curves based on the empirical Lorenz curve. J. Statistical Planning and Inference 74 (1998) 6591. CrossRef
M. Csörgö and R. Zitikis, On confidence bands for the Lorenz and Goldie curves, in Advances in the theory and practice of statistics. Wiley, New York (1997) 261–281.
Csörgö, M. and Zitikis, R., On the rate of strong consistency of Lorenz curves. Statist. Probab. Lett. 34 (1997) 113121. CrossRef
Csörgö, M. and Zitikis, R., Strassen's LIL for the Lorenz curve. J. Multivariate Anal. 59 (1996) 112. CrossRef
Davydov, Y., Convex rearrangements of stable processes. J. Math. Sci. 92 (1998) 40104016. CrossRef
Davydov, Y. and Egorov, V., Functional limit theorems for induced order statistics. Math. Methods Stat. 9 (2000) 297313.
Davydov, Y., Khoshnevisan, D., Shi, Zh. and Zitikis, R., Convex Rearrangements, Generalized Lorenz Curves, and Correlated Gaussian Data. J. Statistical Planning and Inference 137 (2006) 915934. CrossRef
Davydov, Y. and Thilly, E., Convex rearrangements of Gaussian processes. Theory Probab. Appl. 47 (2002) 219235. CrossRef
Y. Davydov and E. Thilly, Convex rearrangements of smoothed random processes, in Limit theorems in probability and statistics. Fourth Hungarian colloquium on limit theorems in probability and statistics, Balatonlelle, Hungary, June 28–July 2, 1999. Vol I. I. Berkes et al., Eds. Janos Bolyai Mathematical Society, Budapest (2002) 521–552.
Y. Davydov and A.M. Vershik, Réarrangements convexes des marches aléatoires. Ann. Inst. Henri Poincaré, Probab. Stat. 34 (1998) 73–95.
Davydov, Y. and Zitikis, R., Generalized Lorenz curves and convexifications of stochastic processes. J. Appl. Probab. 40 (2003) 906925. CrossRef
Y. Davydov and R. Zitikis, Convex rearrangements of random elements, in Asymptotic Methods in Stochastics. American Mathematical Society, Providence, RI (2004) 141–171.
Doney, R.A. and Maller, R.A., Stability and attraction to normality for Lévy processes at zero and at infinity. J. Theor. Probab. 15 (2002) 751792. CrossRef
W. Feller, An introduction to probability theory and its applications, Vol. I and II. John Wiley and Sons Ed. (1968).
I.I. Gihman and A.V. Skorohod, Introduction to the theory of random processes. W. B. Saunders Co., Philadelphia, PA (1969).
W. Linde, Probability in Banach Spaces – Stable and Infinitely Divisible Distributions. Wiley, Chichester (1986).
Philippe, A. and Thilly, E., Identification of locally self-similar Gaussian process by using convex rearrangements. Methodol. Comput. Appl. Probab. 4 (2002) 195209. CrossRef
B. Ramachandran, On characteristic functions and moments. Sankhya 31 Series A (1969) 1–12.
Wschebor, M., Almost sure weak convergence of the increments of Lévy processes. Stochastic Proc. App. 55 (1995) 253270. CrossRef
M. Wschebor, Smoothing and occupation measures of stochastic processes. Ann. Fac. Sci. Toulouse, Math 15 (2006) 125–156.