Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T13:17:15.304Z Has data issue: false hasContentIssue false

Central limit theorem for sampled sumsof dependent random variables

Published online by Cambridge University Press:  29 October 2010

Nadine Guillotin-Plantard*
Affiliation:
Université Claude Bernard – Lyon I, Institut Camille Jordan, Bâtiment Braconnier, 43 avenue du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
Clémentine Prieur*
Affiliation:
INSA Toulouse, Institut Mathématique de Toulouse, Équipe de Statistique et Probabilités, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France
*
Corresponding authors: [email protected], [email protected]
Corresponding authors: [email protected], [email protected]
Get access

Abstract

We prove a central limit theorem for linear triangulararrays under weak dependence conditions. Our result is then appliedto dependent random variables sampled by a ${\mathbb Z}$ -valued transient random walk. This extends the resultsobtained by [N. Guillotin-Plantard and D. Schneider, Stoch. Dynamics3 (2003) 477–497]. An applicationto parametric estimation by random sampling is also provided.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbour, A.D., Gerrard, R.M. and Reinert, G., Iterates of expanding maps. Probab. Theory Relat. Fields 116 (2000) 151180. CrossRef
Bardet, J.M., Doukhan, P., Lang, G. and Ragache, N., Dependent Linderberg central limit theorem and some applications. ESAIM: PS 12 (2008) 154172. CrossRef
H.C.P. Berbee, Random walks with stationary increments and renewal theory. Math. Centre Tracts 112, Amsterdam (1979).
Collet, P., Martinez, S. and Schmitt, B., Exponential inequalities for dynamical measures of expanding maps of the interval. Probab. Theory. Relat. Fields 123 (2002) 301322. CrossRef
Coulon-Prieur, C. and Doukhan, P., A triangular CLT for weakly dependent sequences. Statist. Probab. Lett. 47 (2000) 6168. CrossRef
D. Dacunha-Castelle and M. Duflo, Problèmes à temps mobile. Deuxième édition. Masson (1993).
Dedecker, J. and Prieur, C., New dependence coefficients, Examples and applications to statistics. Probab. Theory Relat. Fields 132 (2005) 203236. CrossRef
J. Dedecker, P. Doukhan, G. Lang, J.R. Leon, S. Louhichi and C. Prieur, Weak dependence: With Examples and Applications. Lect. Notes in Stat. 190. Springer, XIV (2007).
Deniau, C., Oppenheim, G. and Viano, M.C., Estimation de paramètre par échantillonnage aléatoire. (French. English summary) [Random sampling and parametric estimation]. C. R. Acad. Sci. Paris Sér. I Math. 306 (1988) 565568.
Doukhan, P. and Louhichi, S., A new weak dependence condition and applications to moment inequalities. Stochastic Process. Appl. 84 (1999) 313342. CrossRef
Guillotin-Plantard, N. and Schneider, D., Limit theorems for sampled dynamical systems. Stoch. Dynamics 3 (2003) 477497. CrossRef
Hofbauer, F. and Keller, G., Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z. 180 (1982) 119140. CrossRef
Ibragimov, I.A., Some limit theorems for stationary processes. Theory Probab. Appl. 7 (1962) 349382. CrossRef
Kingman, J.F.C., The ergodic theory of subadditive stochastic processes. J. R. Statist. Soc. B 30 (1968) 499510.
Lacey, M., On weak convergence in dynamical systems to self-similar processes with spectral representation. Trans. Amer. Math. Soc. 328 (1991) 767778. CrossRef
Lacey, M., Petersen, K., Rudolph, D. and Wierdl, M., Random ergodic theorems with universally representative sequences. Ann. Inst. H. Poincaré Probab. Statist. 30 (1994) 353395.
Lasota, A. and Yorke, J.A., On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 (1974) 481488. CrossRef
F. Merlevède and M. Peligrad, On the coupling of dependent random variables and applications. Empirical process techniques for dependent data. Birkhäuser, Boston (2002), pp. 171–193.
Morita, T., Local limit theorem and distribution of periodic orbits of Lasota-Yorke transformations with infinite Markov partition. J. Math. Soc. Jpn 46 (1994) 309343. CrossRef
Peligrad, M. and Utev, S., Central limit theorem for linear processes. Ann. Probab. 25 (1997) 443456.
Rio, E., About the Lindeberg method for strongly mixing sequences. ESAIM: PS 1 (1995) 3561. CrossRef
Rosenblatt, M., A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 42 (1956) 4347. CrossRef
Rozanov, Y.A. and Volkonskii, V.A., Some limit theorems for random functions I. Theory Probab. Appl. 4 (1959) 178197.
C.J. Stone, On local and ratio limit theorems. Proc. Fifth Berkeley Symp. Math. Statist. Probab. Univ. Californie (1966), pp. 217–224.
Utev, S.A., Central limit theorem for dependent random variables. Probab. Theory Math. Statist. 2 (1990) 519528.
Utev, S.A., Sums of random variables with $\varphi$ -mixing. Siberian Adv. Math. 1 (1991) 124155.
Withers, C.S., Central limit theorems for dependent variables. I. Z. Wahrsch. Verw. Gebiete 57 (1981) 509534 (corrigendum in Z. Wahrsch. Verw. Gebiete 63 (1983) 555). CrossRef