Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T01:30:05.919Z Has data issue: false hasContentIssue false

Asymptotic behavior of differential equations drivenby periodic andrandom processes with slowly decaying correlations

Published online by Cambridge University Press:  15 November 2005

Renaud Marty*
Affiliation:
Laboratoire de Statistique et Probabilités, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 4, France; [email protected]
Get access

Abstract

We consider a differential equation with a random rapidly varying coefficient.The random coefficient is aGaussian process with slowly decaying correlations and compete with a periodic component. In theasymptotic framework corresponding to the separation of scales present in theproblem, we prove that the solution of the differential equationconverges in distribution to the solution of a stochastic differential equationdriven by a classical Brownian motion in some cases, by a fractional Brownianmotion in other cases. The proofs of these results are based on the Lyons theory ofrough paths. Finally we discuss applications in two physical situations.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

P. Billingsley, Convergence of Probability Measures. Wiley (1968).
Bunimovich, A., Jauslin, H.R., Lebowitz, J.L., Pellegrinotti, A. and Nielaba, P., Diffusive energy growth in classical and quantum driven oscillators. J. Stat. Phys. 62 (1991) 793817. CrossRef
Coutin, L. and Qian, Z., Stochastic analysis, rough path analysis and fractional Brownian motions. Prob. Th. Related Fields 122 (2002) 108140. CrossRef
Doss, H., Liens entre équations différentielles stochastiques et ordinaires. Ann. Inst. H. Poincaré 13 (1977) 99125.
S.N. Ethier and T.G. Kurtz, Markov processes, characterization and convergence. Wiley, New York (1986).
J.P. Fouque, G. Papanicolaou and R. Sircar, Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press (2000).
Garnier, J., A multi-scaled diffusion-approximation theorem. Applications to wave propagation in random media. ESAIM: PS 1 (1997) 183206. CrossRef
Garnier, J., Asymptotic behavior of the quantum harmonic oscillator driven by a random time-dependent electric field. J. Stat. Phys. 93 (1998) 211241. CrossRef
J. Garnier, Scattering, spreading, and localization of an acoustic pulse by a random medium, in Three Courses on Partial Differential Equations, E. Sonnendrücker Ed. Walter de Gruyter, Berlin (2003) 71–123.
J. Garnier and R. Marty, Effective pulse dynamics in optical fibers with polarization mode dispersion. Preprint, submitted to Wave Motion.
Khasminskii, R.Z., A limit theorem for solutions of differential equations with random right hand side. Theory Probab. Appl. 11 (1966) 390406. CrossRef
H.J. Kushner, Approximation and weak convergence methods for random processes. MIT Press, Cambridge (1994).
Ledoux, M., Lyons, T. and Qian, Z., Lévy area of Wiener processes in Banach spaces. Ann. Probab. 30 (2002) 546578.
Ledoux, M., Qian, Z. and Zhang, T., Large deviations and support theorem for diffusion processes via rough paths. Stoch. Proc. Appl. 102 (2002) 265283. CrossRef
A. Lejay, An introduction to rough paths, in Séminaire de Probabilités XXXVII. Lect. Notes Math. Springer-Verlag (2003).
Lyons, T., Differential equations driven by rough signals. Rev. Mat. Iberoamer. 14 (1998) 215310. CrossRef
Lyons, T., Differential equations driven by rough signals (I): an extension of an inequality of L.C. Young. Math. Res. Lett. 1 (1994) 451464. CrossRef
Lyons, T. and Qian, Z., Flow equations on spaces of rough paths. J. Funct. Anal. 149 (1997) 135159. CrossRef
T. Lyons and Z. Qian, System control and rough paths. Oxford Mathematical Monographs. Oxford University Press (2002).
R. Marty, Théorème limite pour une équation différentielle à coefficient aléatoire à mémoire longue. C. R. Acad. Sci. Paris, Ser. I 338 (2004).
A. Messiah, Quantum Mechanics. North Holland, Amsterdam (1962).
D. Middleton, Introduction to statistical communication theory. Mc Graw Hill Book Co., New York (1960).
G. Papanicolaou, Waves in one dimensional random media, in École d'été de Probabilités de Saint-Flour, P.L. Hennequin Ed. Springer. Lect. Notes Math. (1988) 205–275.
Papanicolaou, G. and Keller, J.B., Stochastic differential equations with two applications to random harmonic oscillators and waves in random media. SIAM J. Appl. Math. 21 (1971) 287305. CrossRef
Papanicolaou, G. and Kohler, W., Asymptotic theory of mixing stochastic ordinary differential equations. Comm. Pure Appl. Math. 27 (1974) 641668. CrossRef
G. Papanicolaou, D.W. Stroock and S.R.S.Varadhan, Martingale approach to some limit theorem, in Statistical Mechanics and Dynamical systems, D. Ruelle Ed. Duke Turbulence Conf., Duke Univ. Math. Series III, Part IV (1976) 1–120.
G. Samorodnitsky and M.S. Taqqu, Stable non-Gaussian random processes. Chapman and Hall (1994).
L.I. Schiff, Quantum Mechanics. Mac Graw Hill, New York (1968).
Sølna, K., Acoustic Pulse Spreading in a Random Fractal. SIAM J. Appl. Math. 63 (2003) 17641788. CrossRef
Sussmann, H.J., On the gap between deterministic and stochastic ordinary differential equations. Ann. Prob. 6 (1978) 1941. CrossRef