We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The purpose of this paper is to apply particle methods to the numerical solution of theEPDiff equation. The weak solutions of EPDiff are contact discontinuities that carrymomentum so that wavefront interactions represent collisions in which momentum isexchanged. This behavior allows for the description of many rich physical applications,but also introduces difficult numerical challenges. We present a particle method for theEPDiff equation that is well-suited for this class of solutions and for simulatingcollisions between wavefronts. Discretization by means of the particle method is shown topreserve the basic Hamiltonian, the weak and variational structure of the originalproblem, and to respect the conservation laws associated with symmetry under the Euclideangroup. Numerical results illustrate that the particle method has superior features in bothone and two dimensions, and can also be effectively implemented when the initial data ofinterest lies on a submanifold.
Implicit sampling is a sampling scheme for particle filters, designed to move particles one-by-one so that they remain in high-probability domains. We present a new derivation of implicit sampling, as well as a new iteration method for solving the resulting algebraic equations.
We study order-adaptive implementations of Hermite methods for hyperbolic and singularly perturbed parabolic initial value problems. Exploiting the facts that Hermite methods allow the degree of the local polynomial representation to vary arbitrarily from cell to cell and that, for hyperbolic problems, each cell can be evolved independently over a time-step determined only by the cell size, a relatively straightforward method is proposed. Its utility is demonstrated on a number of model problems posed in 1+1 and 2+1 dimensions.
We develop a well-posedness theory for second order systems in bounded domains whereboundary phenomena like glancing and surface waves play an important role. Attempts havepreviously been made to write a second order system consisting of nequations as a larger first order system. Unfortunately, the resulting first order systemconsists, in general, of more than 2n equations which leads to manycomplications, such as side conditions which must be satisfied by the solution of thelarger first order system. Here we will use the theory of pseudo-differential operatorscombined with mode analysis. There are many desirable properties of this approach: (1) thereduction to first order systems of pseudo-differential equations poses no difficulty andalways gives a system of 2n equations. (2) We can localize the problem,i.e., it is only necessary to study the Cauchy problem and halfplaneproblems with constant coefficients. (3) The class of problems we can treat is much largerthan previous approaches based on “integration by parts”. (4) The relation betweenboundary conditions and boundary phenomena becomes transparent.
The convergence and efficiency of the reduced basis method used for the approximation of the solutions to a class of problems written as a parametrized PDE depends heavily on the choice of the elements that constitute the “reduced basis”. The purpose of this paper is to analyze the a priori convergence for one of the approaches used for the selection of these elements, the greedy algorithm. Under natural hypothesis on the set of all solutions to the problem obtained when the parameter varies, we prove that three greedy algorithms converge; the last algorithm, based on the use of an a posteriori estimator, is the approach actually employed in the calculations.
The compatibility of unsynchronized interleaved uniform sampling with Sigma-Deltaanalog-to-digital conversion is investigated. Let f be a bandlimitedsignal that is sampled on a collection of N interleaved grids {kT + Tn} k ∈ Zwith offsets \hbox{$\{T_n\}_{n=1}^N\subset [0,T]$}. If the offsets Tn arechosen independently and uniformly at random from [0,T] and if thesample values of f are quantized with a first order Sigma-Deltaalgorithm, then with high probability the quantization error \hbox{$|f(t) - \widetilde{f}(t)|$}is at most of orderN-1log N.
A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.
We consider high order finite difference approximations to the Helmholtz equation in an exterior domain. We include a simplified absorbing boundary condition to approximate the Sommerfeld radiation condition. This yields a large, but sparse, complex system, which is not self-adjoint and not positive definite. We discretize the equation with a compact fourth or sixth order accurate scheme. We solve this large system of linear equations with a Krylov subspace iterative method. Since the method converges slowly, a preconditioner is introduced, which is a Helmholtz equation but with a modified complex wavenumber. This is discretized by a second or fourth order compact scheme. The system is solved by BICGSTAB with multigrid used for the preconditioner. We study, both by Fourier analysis and computations this preconditioned system especially for the effects of high order discretizations.
We design efficient numerical schemes for approximating the MHD equations in multi-dimensions. Numerical approximations must be able to deal with the complex wave structure of the MHD equations and the divergence constraint. We propose schemes based on the genuinely multi-dimensional (GMD) framework of [S. Mishra and E. Tadmor, Commun. Comput. Phys. 9 (2010) 688–710; S. Mishra and E. Tadmor, SIAM J. Numer. Anal. 49 (2011) 1023–1045]. The schemes are formulated in terms of vertex-centered potentials. A suitable choice of the potential results in GMD schemes that preserve a discrete version of divergence. First- and second-order divergence preserving GMD schemes are tested on a series of benchmark numerical experiments. They demonstrate the computational efficiency and robustness of the GMD schemes.