Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T06:31:19.325Z Has data issue: false hasContentIssue false

Zero-Dissipation Limit for Nonlinear Waves

Published online by Cambridge University Press:  15 April 2002

Jerry L. Bona
Affiliation:
Department of Mathematics and the Texas Institute for Computational and Applied Mathematics, The University of Texas at Austin, RLM 8.100, C1200, Austin, Texas, 78712 USA.
Jiahong Wu
Affiliation:
Department of Mathematics, The University of Texas at Austin, RLM 8.100, C1200, Austin, Texas, 78712 USA.
Get access

Abstract

Evolution equations featuring nonlinearity, dispersion anddissipation are considered here. For classes of such equationsthat include the Korteweg-de Vries-Burgers equation and the BBM-Burgers equation, the zero dissipation limit is studied.Uniform bounds independent of the dissipation coefficient are derived and zero dissipation limit results with optimal convergence rates are established.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelouhab, L., Bona, J.L., Felland, M. and Saut, J.-C., Non-local models for nonlinear, dispersive waves. Physica D 40 (1989) 360-392. CrossRef
Amick, C.J., Bona, J.L. and Schonbek, M.E., Decay of solutions of some nonlinear wave equations. J. Differential Equations 81 (1989) 1-49. CrossRef
Benjamin, T.B., Bona, J.L. and Mahony, J.J., Model equations for long waves in nonlinear systems. Philos. Trans. Royal Soc. London Ser. A 272 (1972) 47-78. CrossRef
Biler, P., Asymptotic behavior in time of some equations generalizing the Korteweg-de Vries equation. Bull. Polish Acad. Sci. 32 (1984) 275-282.
J.L. Bona, On solitary waves and their role in the evolution of long waves. In Applications of Nonlinear Analysis in the Physical Sciences, H. Amann, N. Bazley and K. Kirchgässner Eds, Pitman, London (1983) 183-205.
Bona, J.L. and Bryant, P.J., A mathematical model for long waves generated by a wave-maker in nonlinear dispersive systems. Proc. Cambridge Philos. Soc. 73 (1973) 391-405. CrossRef
Bona, J.L., Demengel, F. and Promislow, K., Fourier splitting and the dissipation of nonlinear waves. Proc. Royal Soc. Edinburgh 129A (1999) 477-502. CrossRef
Bona, J.L., Dougalis, V.A., Karakashian, O.A. and McKinney, W.R., The effect of dissipation on solutions of the generalized KdV equation. J. Comp. Appl. Math. 74 (1996) 127-154. CrossRef
Bona, J.L., Dougalis, V.A., Karakashian, O.A. and McKinney, W.R., Conservative high-order numerical schemes for the generalized Korteweg-de Vries equation. Philos. Trans. Poyal Soc. Lond. Ser. A 351 (1995) 107-164. CrossRef
J.L. Bona and L. Luo, Initial-boundary-value problems for model equations for the propagation of long waves. In Evolution Equations, G. Ferreyra, G.R. Goldstein, and F. Neubrander Eds, Marcel Dekker, Inc.: New York (1995) 65-94.
Bona, J.L. and Luo, L., A generalized Korteweg-de Vries equation in a quarter plane. Contemporary Math. 221 (1999) 59-125. CrossRef
Bona, J.L. and Luo, L., Decay of solutions to nonlinear, dispersive, dissipative wave equations. Diff. & Integral Equ. 6 (1993) 961-980.
Bona, J.L. and Luo, L., More results on the decay of solutions to nonlinear, dispersive wave equations. Discrete & Cont. Dynamical Systems 1 (1995) 151-193.
Bona, J.L., Pritchard, W.G. and Scott, L.R., An evaluation of a model equation for water waves. Philos. Trans. Royal Soc. Lond. Ser. A 302 (1981) 457-510. CrossRef
Bona, J.L., Promislow, K. and Wayne, C.E., On the asymptotic behavior of solutions to nonlinear, dispersive, dissipative wave equations. Math. & Computers in Simulation 37 (1994) 265-277. CrossRef
Bona, J.L., Promislow, K. and Wayne, C.E., Higher-order asymptotics of decaying solutions of some nonlinear, dispersive, dissipative wave equations. Nonlinearity 8 (1995) 1179-1206. CrossRef
Bona, J.L. and Smith, R., The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Royal Soc. Lond. Ser. A 278 (1975) 555-601. CrossRef
Bona, J.L. and Winther, R., The KdV equation, posed in a quarter plane. SIAM J. Math. Anal. 14 (1983) 1056-1106. CrossRef
Bona, J.L. and Winther, R., KdV equation in a quarter plane, continuous dependence results. Diff. & Integral Equ. 2 (1989) 228-250.
Bona, J.L. and Weissler, F.B., Similarity solutions of the generalized Korteweg-de Vries equation. Math. Proc. Cambridge Philos. Soc. 127 (1999) 323-351. CrossRef
Dix, D., The dissipation of nonlinear dispersive waves. Comm. PDE 17 (1992) 1665-1693. CrossRef
Johnson, R.S., A nonlinear equation incorporating damping and dispersion. J. Fluid Mech. 42 (1970) 49-60. CrossRef
Johnson, R.S., Shallow water waves on a viscous fluid - The undular bore. Phys. Fluids 15 (1972) 1693-1699. CrossRef
C.E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math. XLVI (1993) 27-94.
Kenig, C.E., Ponce, G. and Vega, L., A bilinear estimate with applications to the KdV equation. J. Amer. Math. Soc. 9 (1996) 573-603. CrossRef
Miura, R.M., Gardner, C.S. and Kruskal, M.D., Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys. 9 (1968) 1204-1209. CrossRef
P. Naumkin and I. Shishmarev, Nonlinear nonlocal equations in the theory of waves. Series Translations of Math. Mono. 133, American Math. Soc.: Providence (1994).
Ostrovsky, L.A., Short-wave asymptotics for weak shock waves and solitons in mechanics. Internat. J. Non-linear Mech. 11 (1976) 401-416. CrossRef
Ott, E. and Sudan, R.N., Nonlinear theory of ion acoustic waves with Landau damping. Phys. Fluids 12 (1969) 2388-2394. CrossRef
Saut, J.-C., Sur quelques géneralisations de l'équation de Korteweg-de Vries. J. Math. Pures Appl. 58 (1979) 21-61.
The, J. Wu inviscid limit of the complex Ginzburg-Landau equation. J. Differential Equations 142 (1998) 413-433.
Zabusky, N.J. and Galvin, C.J., Shallow-water waves, the KdV equation and solitons. J. Fluid Mech. 47 (1971) 811-824. CrossRef
Zhang, B.-Y., Taylor series expansion for solutions of the KdV equation with respect to their initial values. J. Funct. Anal. 129 (1995) 293-324. CrossRef