Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T11:26:21.708Z Has data issue: false hasContentIssue false

Vibrations of a beam between obstacles. Convergence of a fully discretized approximation

Published online by Cambridge University Press:  15 November 2006

Yves Dumont
Affiliation:
IREMIA, Université de La Réunion, 15 avenue R. Cassin, 97715 Saint-Denis Messag. 9, France. [email protected]
Laetitia Paoli
Affiliation:
LaMUSE, Université de St-Étienne, 23 rue P. Michelon, 42023 St-Étienne Cedex 2, France. [email protected]
Get access

Abstract

We consider mathematical models describing dynamics of an elastic beam which is clamped at its left end to a vibrating support and which can move freely at its right end between two rigid obstacles. We model the contact with Signorini's complementary conditions between the displacement and the shear stress. For this infinite dimensional contact problem, we propose a family of fully discretized approximations and their convergence is proved. Moreover some examples of implementation are presented. The results obtained here are also valid in the case of a beam oscillating between two longitudinal rigid obstacles.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brogliato, B., A.A. ten Dam, L. Paoli, F. Genot and M. Abadie, Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. ASME Appl. Mechanics Rev. 55 (2002) 107149. CrossRef
Dumont, Y., Vibrations of a beam between stops: Numerical simulations and comparison of several numerical schemes. Math. Comput. Simul. 60 (2002) 4583. CrossRef
Dumont, Y., Some remarks on a vibro-impact scheme. Numer. Algorithms 33 (2003) 227240. CrossRef
Y. Dumont and L. Paoli, Simulations of beam vibrations between stops: comparison of several numerical approaches, in Proceedings of the Fifth EUROMECH Nonlinear Dynamics Conference (ENOC-2005), CD Rom (2005).
L. Fox, The numerical solution of two-point boudary values problems in ordinary differential equations, Oxford University Press, New York (1957).
J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer-Verlag, New York, Berlin, Heidelberg (1983).
T. Hughes, The finite element method. Linear static and dynamic finite element analysis. Prentice-Hall International, Englewood Cliffs (1987).
K. Kuttler and M. Shillor, Vibrations of a beam between two stops. Dynamics of continuous, discrete and impulsive systems, Series B, Applications and Algorithms 8 (2001) 93–110.
Lamarque, C.H. and Janin, O., Comparison of several numerical methods for mechanical systems with impacts. Int. J. Num. Meth. Eng. 51 (2001) 11011132.
Moon, F.C. and Shaw, S.W., Chaotic vibration of a beam with nonlinear boundary conditions. Int. J. Nonlinear Mech. 18 (1983) 465477. CrossRef
L. Paoli, Analyse numérique de vibrations avec contraintes unilatérales. Ph.D. thesis, University of Lyon 1, France (1993).
Paoli, L., Time-discretization of vibro-impact. Phil. Trans. Royal Soc. London A. 359 (2001) 24052428. CrossRef
Paoli, L., An existence result for non-smooth vibro-impact problems. Math. Mod. Meth. Appl. S. (M3AS) 15 (2005) 5393. CrossRef
Paoli, L. and Schatzman, M., Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales : cas avec perte d'énergie. RAIRO Modél. Math. Anal. Numér. 27 (1993) 673717. CrossRef
L. Paoli and M. Schatzman, Ill-posedness in vibro-impact and its numerical consequences, in Proceedings of European Congress on COmputational Methods in Applied Sciences and engineering (ECCOMAS), CD Rom (2000).
Paoli, L. and Schatzman, M., A numerical scheme for impact problems, I and II. SIAM Numer. Anal. 40 (2002) 702733; 734–768. CrossRef
Ravn, P., A continuous analysis method for planar multibody systems with joint clearance. Multibody Syst. Dynam. 2 (1998) 124. CrossRef
R.T. Rockafellar, Convex analysis. Princeton University Press, Princeton (1970).
Schatzman, M. and Bercovier, M., Numerical approximation of a wave equation with unilateral constraints. Math. Comp. 53 (1989) 5579. CrossRef
Shaw, S.W. and Rand, R.H., The transition to chaos in a simple mechanical system. Int. J. Nonlinear Mech. 24 (1989) 4156. CrossRef
J. Simon, Compact sets in the space Lp(0,T;B) Ann. Mat. Pur. Appl. 146 (1987) 65–96.
Stoianovici, D. and Hurmuzlu, Y., A critical study of applicability of rigid body collision theory. ASME J. Appl. Mech. 63 (1996) 307316. CrossRef