Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T20:05:15.915Z Has data issue: false hasContentIssue false

Theoretical and numerical study of a free boundary problem byboundary integral methods

Published online by Cambridge University Press:  15 April 2002

Michel Crouzeix
Affiliation:
Institut de Recherche Mathématique de Rennes, UMR CNRS 6625, Université de Rennes 1, Campus de Beaulieu, Rennes, France. ([email protected])
Philippe Féat
Affiliation:
Institut de Recherche Mathématique de Rennes, UMR CNRS 6625, Université de Rennes 1, Campus de Beaulieu, Rennes, France. ([email protected])
Francisco-Javier Sayas
Affiliation:
Dep. Matemática Aplicada, Universidad de Zaragoza, Centro Politécnico Superior, c/ María de Luna, 350015 Zaragoza, Spain.
Get access

Abstract

In this paper we study a free boundary problem appearing inelectromagnetism and its numerical approximation by means ofboundary integral methods. Once the problem is written in aequivalent integro-differential form, with the arcparametrization of the boundary as unknown, we analyse it inthis new setting. Then we consider Galerkin and collocationmethods with trigonometric polynomial and spline curves asapproximate solutions.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alt, H.W. and Caffarelli, L.A., Existence and regularity for a minimum problem with a free boundary. J. Reine Angew. Math. 25 (1981) 105-144.
Coulaud, O. and Henrot, A., Numerical approximation of a free boundary problem arising in electromagnetic shaping. SIAM J. Numer. Anal. 31 (1994) 1109-1127. CrossRef
Crouzeix, M., Variational approach of magnetic shaping problem. Eur. J. Mech. B/Fluids 10 (1991) 627-536.
Descloux, J., Stability of solutions of the bidimensional magnetic shaping problem in absence of surface tension. Eur. J. Mech. B/Fluids 10 (1991) 513-526.
Ph. Féat, Approximation d'un problème de frontière libre bidimensionnel. Thèse de l'Université de Rennes I, France (1998).
A. Friedman, Variational Principles and Free Boundary Problems. John Wiley & Sons, New York (1982).
Gustafsson, B. and Shagholian, H., Existence and geometric properties of solutions of a free boundary problem in potential theory. J. Reine Angew. Math. 68 (1996) 137-179.
Henrot, A., Subsolutions and supersolutions in a free boundary problem. Ark. Mat. 32 (1994) 79-98. CrossRef
Henrot, A. and Pierre, M., Un problème inverse en formage des métaux liquides. RAIRO Modél. Math. Anal. Numér. 23 (1989) 155-177. CrossRef
R. Kress, Linear Integral Equations. Springer, New York (1989).
McLean, W. and Wendland, W.L., Trigonometric approximation of solutions of periodic pseudodifferential equations. Oper. Theory: Adv. Appl. 41 (1989) 359-383.
S. Mikhlin and S. Prößdorf, Singular Integral Operators. Springer-Verlag, Berlin (1986).
X. Pelgrin, Un problème de frontière libre. Thèse de l'Université de Rennes I, France (1994).
Pierre, M. and Roche, J.R., Numerical simulation of tridimensional electromagnetic shaping of liquid metals. Numer. Math. 65 (1993) 203-217. CrossRef
S. Prößdorf and B. Silbermann, Numerical Analysis for Integral and Related Operator Equations. Akademie-Verlag, Berlin (1991).
Saranen, J. and Schroderus, L., Quadrature methods for strongly elliptic equations of negative order on smooth closed curves. SIAM J. Numer. Anal. 30 (1993) 1769-1795. CrossRef
Yan, Y. and Sloan, I.H., On integral equations of the first kind with logarithmic kernels. J. Integral Equations. Appl. 1 (1988) 549-579. CrossRef