Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T06:01:53.579Z Has data issue: false hasContentIssue false

Theoretical and numerical comparison of some sampling methods for molecular dynamics

Published online by Cambridge University Press:  16 June 2007

Eric Cancès
Affiliation:
CERMICS, École Nationale des Ponts et Chaussées, 6-8 avenue Blaise Pascal, 77455 Marne-la-Vallée Cedex 2, France. [email protected]; [email protected]; [email protected] INRIA, Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France.
Frédéric Legoll
Affiliation:
CERMICS, École Nationale des Ponts et Chaussées, 6-8 avenue Blaise Pascal, 77455 Marne-la-Vallée Cedex 2, France. [email protected]; [email protected]; [email protected] Institute for Mathematics and its Applications, University of Minnesota, 400 Lind Hall, 207 Church Street SE, Minneapolis MN 55455, USA.
Gabriel Stoltz
Affiliation:
CERMICS, École Nationale des Ponts et Chaussées, 6-8 avenue Blaise Pascal, 77455 Marne-la-Vallée Cedex 2, France. [email protected]; [email protected]; [email protected] CEA/DAM Ile-de-France, BP 12, 91680 Bruyères-le-Châtel, France.
Get access

Abstract

The purpose of the present article is to compare different phase-spacesampling methods, such as purely stochastic methods (Rejection method, Metropolized independence sampler, Importance Sampling),stochastically perturbed Molecular Dynamics methods (Hybrid Monte Carlo, Langevin Dynamics, Biased Random Walk), and purelydeterministic methods (Nosé-Hoover chains, Nosé-Poincaré and RecursiveMultiple Thermostats (RMT) methods). After recalling some theoretical convergence properties forthe various methods, we provide some new convergence resultsfor the Hybrid Monte Carlo scheme, requiring weaker (and easier tocheck) conditions than previously known conditions. We then turn to the numericalefficiency of the sampling schemes for a benchmark model of linearalkane molecules. In particular, the numerical distributions that are generated are compared in a systematic way, on the basisof some quantitative convergence indicators.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

E. Akhmatskaya and S. Reich, The targetted shadowing hybrid Monte Carlo (TSHMC) method, in New Algorithms for Macromolecular Simulation, Lecture Notes in Computational Science and Engineering 49, B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schuette and R. Skeel Eds., Springer Verlag, Berlin and New York (2006) 145–158.
M.P. Allen and D.J. Tildesley, Computer simulation of liquids. Oxford Science Publications (1987).
H.C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature J. Chem. Phys. 72 (1980) 2384–2393.
E. Barth, B.J. Leimkuhler, and C.R. Sweet, Approach to thermal equilibrium in biomolecular simulation. Proceedings of AM3-2004 conference, available at the URL http://adrg.maths.ed.ac.uk/ADRG/FILES/Archive/BaLeSw2005.pdf
Bond, S.D., Leimkuhler, B.J., and Laird, B.B., The Nosé-Poincaré method for constant temperature molecular dynamics. J. Comput. Phys. 151 (1999) 114134. CrossRef
Brünger, A., Brooks, C.B., and Karplus, M., Stochastic boundary conditions for molecular dynamics simulations of ST2 water. Chem. Phys. Lett. 105 (1983) 495500. CrossRef
Cancès, E., Castella, F., Chartier, P., Faou, E., Le Bris, C., Legoll, F. and Turinici, G., High-order averaging schemes with error bounds for thermodynamical properties calculations by molecular dynamics simulations. J. Chem. Phys. 121 (2004) 1034610355. CrossRef
Cancès, E., Castella, F., Chartier, P., Faou, E., Le Bris, C., Legoll, F. and Turinici, G., Long-time averaging for integrable Hamiltonian dynamics. Numer. Math. 100 (2005) 211232. CrossRef
Carter, E.A., Ciccotti, G., Hynes, J.T. and Kapral, R., Constrained reaction coordinate dynamics for the simulation of rare events. Chem. Phys. Lett. 156 (1989) 472477. CrossRef
Y. Chen, Another look at Rejection sampling through Importance sampling. Discussion papers 04-30, Institute of Statistics and Decision Science, Duke University (2004).
Ciccotti, G., Kapral, R. and Vanden-Eijnden, E., Blue Moon sampling, vectorial reaction coordinates, and unbiased constrained dynamics. Chem. Phys. Chem. 6 (2005) 18091814. CrossRef
G. Ciccotti, T. Lelièvre and E. Vanden-Eijnden, Projection of diffusions on submanifolds: Application to mean force computation. CERMICS preprint 309 (2006).
Duane, S., Kennedy, A.D., Pendleton, B. and Roweth, D., Hybrid Monte Carlo. Phys. Letters B. 195 (1987) 216222. CrossRef
M. Duflo, Random iterative models. Springer, Berlin, New York (1997).
E, W., Ren, W. and Vanden-Eijnden, E., Finite temperature string method for the study of rare events. J. Phys. Chem. B 109 (2005) 66886693. CrossRef
L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in advanced mathematics. CRC Press, Chapman and Hall (1991).
D. Frenkel and B. Smit, Understanding Molecular Simulation, From Algorithms to Applications, 2nd edn. Academic Press (2002).
G. Grimett and D. Stirzaker, Probability and Random Processes. Oxford University Press (2001).
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms For Ordinary Differential Equations, Springer Series in Computational Mathematics 31, 2nd edn. Springer-Verlag, Berlin (2006).
S. Hampton, P. Brenner, A. Wenger, S. Chatterjee and J.A. Izaguirre, Biomolecular Sampling: Algorithms, Test Molecules, and Metrics, in New Algorithms for Macromolecular Simulation, Lecture Notes in Computational Science and Engineering 49, B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schuette and R. Skeel Eds., Springer Verlag, Berlin and New York (2006) 103–123.
R.Z. Has'minskii, Stochastic Stability of Differential Equations. Sijthoff and Noordhoff (1980).
Hastings, W.K., Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 (1970) 97109. CrossRef
Hérau, F. and Nier, F., Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential. Arch. Rational Mech. Anal. 171 (2004) 151218. CrossRef
Hoover, W.G., Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31 (1985) 16951697. CrossRef
F.C. Hoppensteadt, M. Rahman and B.D. Welfert, $\sqrt{n}$ -Central limit theorems for Markov processes with applications to circular processes, preprint version (2003). Available at the URL http://math.asu.edu/~bdw/PAPERS/CLT.pdf
Horowitz, A.M., A generalized guided Monte Carlo algorithms. Phys. Lett. B 268 (1991) 247252. CrossRef
Izaguirre, J.A. and Hampton, S.S., Shadow Hybrid Monte Carlo: an efficient propagator in phase space of macromolecules. J. Comput. Phys. 200 (2004) 581604. CrossRef
Kennedy, A.D. and Pendleton, B., Cost of the generalised hybrid Monte Carlo algorithm for free field theory. Nucl. Phys. B 607 (2001) 456510. CrossRef
Laio, A. and Parrinello, M., Escaping free energy minima. Proc. Natl. Acad. Sci. USA 99 (2002) 1256212566. CrossRef
B. Lapeyre, E. Pardoux and R. Sentis, Méthodes de Monte Carlo pour les équations de transport et de diffusion, Mathématiques et applications 29, Springer (1998); B. Lapeyre, E. Pardoux and R. Sentis, translated by A. Craig and F. Craig, Introduction to Monte-Carlo methods for transport and diffusion equations. Oxford University Press (2003).
F. Legoll, Molecular and Multiscale Methods for the Numerical Simulation of Materials. Ph.D. thesis, University of Paris VI, France (2004).
Legoll, F., Luskin, M. and Moeckel, R., Non-ergodicity of the Nosé-Hoover thermostatted harmonic oscillator. Arch. Rat. Mech. Anal. 184 (2007) 449463. CrossRef
B.J. Leimkuhler and S. Reich, Simulating Hamiltonian dynamics, Cambridge monographs on applied and computational mathematics 14. Cambridge University Press (2005).
Leimkuhler, B.J. and Sweet, C.R., Hamiltonian, A formulation for recursive multiple thermostats in a common timescale. SIAM J. Appl. Dyn. Syst. 4 (2005) 187216. CrossRef
J.S. Liu, Monte Carlo strategies in Scientific Computing. Springer Series in Statistics (2001).
Mackenze, P.B., An improved hybrid Monte Carlo. Phys. Lett. B. 226 (1989) 369371. CrossRef
X. Mao, Stochastic differential equations and applications. Horwood, Chichester (1997).
Marsden, J.E. and West, M., Discrete mechanics and variational integrators. Acta Numer. 10 (2001) 357514. CrossRef
Martin, M.G. and Siepmann, J.I., Transferable potentials for phase equilibria. I. United-atom description of n-alkanes. J. Phys. Chem. 102 (1998) 25692577. CrossRef
Martyna, G.J., Klein, M.L. and Tuckerman, M.E., Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 97 (1992) 26352643. CrossRef
Martyna, G.J., Tuckerman, M.E., Tobias, D.J. and Klein, M.L., Explicit reversible integrators for extended systems dynamics. Mol. Phys. 87 (1996) 11171157. CrossRef
Mattingly, J.C., Stuart, A.M. and Higham, D.J., Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerate noise. Stoch. Proc. Appl. 101 (2002) 185232. CrossRef
Mengersen, K.L. and Tweedie, R.L., Rates of convergence in the Hastings-Metropolis algorithm. Ann. Statist. 24 (1996) 101121.
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E., Equations of state calculations by fast computing machines. J. Chem. Phys. 21 (1953) 10871091. CrossRef
Meyn, S.P. and Tweedie, R.L., Stability of Markovian processes. II. Continuous-time processes and sampled chains. Adv. Appl. Probab. 24 (1993) 487517. CrossRef
S.P. Meyn and R.L. Tweedie, Markov Chains and Stochastic Stability. Springer (1993).
Milstein, G.N. and Tretyakov, M.V., Quasi-symplectic methods for Langevin-type equations. IMA J. Numer. Anal. 23 (2003) 593626. CrossRef
Mishra, B. and Schlick, T., The notion of error in Langevin dynamics: I. Linear analysis. J. Chem. Phys. 105 (1996) 299318. CrossRef
Neal, R.M., An improved acceptance procedure for the hybrid Monte-Carlo algorithm. J. Comput. Phys. 111 (1994) 194203. CrossRef
N. Niederreiter, Random Number Generation and Quasi Monte-Carlo Methods. Society for Industrial and Applied Mathematics (1992).
S. Nosé, A Molecular Dynamics method for simulations in the canonical ensemble, Mol. Phys. 52 (1984) 255–268.
S. Nosé, A unified formulation of the constant temperature Molecular Dynamics method, J. Chem. Phys. 81 (1985) 511–519.
Pagès, G., Sur quelques algorithmes récursifs pour les probabilités numériques. ESAIM: PS 5 (2001) 141170. CrossRef
D.C. Rapaport, The Art of Molecular Dynamics Simulations. Cambridge University Press (1995).
Reich, S., Backward error analysis for numerical integrators. SIAM J. Numer. Anal. 36 (1999) 15491570. CrossRef
Roberts, G.O. and Rosenthal, J.S., Optimal scaling of discrete approximations to Langevin diffusions. J. Roy. Stat. Soc. B 60 (1998) 255268. CrossRef
Roberts, G.O. and Tweedie, R.L., Exponential convergence of Langevin diffusions and their discrete approximations. Bernoulli 2 (1996) 341364. CrossRef
Roberts, G.O. and Tweedie, R.L., Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. Biometrika 83 (1996) 95110. CrossRef
Rogers, L.C.G., Smooth transition densities for one-dimensional probabilities. Bull. London Math. Soc 17 (1985) 157161. CrossRef
Ryckaert, J.P. and Bellemans, A., Molecular dynamics of liquid alkanes. Faraday Discuss. 66 (1978) 95106. CrossRef
Scemama, A., Lelièvre, T., Stoltz, G., Cancès, E. and Caffarel, M., An efficient sampling algorithm for Variational Monte Carlo. J. Chem. Phys. 125 (2006) 114105. CrossRef
T. Schlick, Molecular Modeling and Simulation. Springer (2002).
C. Schütte, Conformational dynamics: Modelling, Theory, Algorithm, and Application to Biomolecules. Habilitation Thesis, Free University Berlin (1999).
C. Schütte and W. Huisinga, Biomolecular conformations can be identified as metastable sets of molecular dynamics, in Handbook of Numerical Analysis (Special volume on computational chemistry), Vol. X, P.G. Ciarlet and C. Le Bris Eds., Elsevier (2003) 699–744.
Schütte, C., Fischer, A., Huisinga, W. and Deuflhard, P., A direct approach to conformational dynamics based on Hybrid Monte-Carlo. J. Comp. Phys. 151 (1999) 146168. CrossRef
Shardlow, T., Splitting for dissipative particle dynamics. SIAM J. Sci. Comput. 24 (2003) 12671282. CrossRef
R.D. Skeel, in The graduate student's guide to numerical analysis, Springer Series in Computational Mathematics, M. Ainsworth, J. Levesley and M. Marletta Eds., Springer-Verlag, Berlin (1999) 119–176.
Skeel, R.D. and Izaguirre, J.A., An impulse integrator for Langevin dynamics. Mol. Phys. 100 (2002) 38853891. CrossRef
Sorensen, M.R. and Voter, A.F., Temperature accelerated dynamics for simulation of infrequent events. J. Chem. Phys. 112 (2000) 95999606. CrossRef
G. Stoltz, Quelques méthodes mathématiques pour la simulation moléculaire et multiéchelle. Ph.D. Thesis (in preparation).
C.R. Sweet, Hamiltonian Thermostatting Techniques for Molecular Dynamics Simulation. Ph.D. Thesis, University of Leicester (2004).
Talay, D., Second-order discretization schemes of stochastic differential systems for the computation of the invariant law. Stoch. Stoch. Rep. 29 (1990) 1336. CrossRef
D. Talay, Approximation of invariant measures of nonlinear Hamiltonian and dissipative stochastic differential equations, in Progress in Stochastic Structural Dynamics, R. Bouc and C. Soize Eds., Publication du L.M.A.-C.N.R.S. 152 (1999) 139–169.
Talay, D., Stochastic Hamiltonian dissipative systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Proc. Rel. Fields 8 (2002) 163198.
Tuckerman, M.E. and Martyna, G.J., Understanding modern molecular dynamics: Techniques and applications. J. Phys. Chem. B 104 (2000) 159178. CrossRef
Verlet, L., Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159 (1967) 98103. CrossRef
Voter, A.F., A method for accelerating the molecular dynamics simulation of infrequent events. J. Chem. Phys. 106 (1997) 46654677. CrossRef
Voter, A.F., Parallel replica method for dynamics of infrequent events. Phys. Rev. B 57 (1998) 1398513988. CrossRef
Wang, W. and Skeel, R.D., Analysis of a few numerical integration methods for the Langevin equation. Mol. Phys. 101 (2003) 21492156. CrossRef
Zhu, Z., Tuckerman, M.E., Samuelson, S.O. and Martyna, G.J., Using novel variable transformations to enhance conformational sampling in molecular dynamics. Phys. Rev. Lett. 88 (2002) 100201. CrossRef