Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T06:34:22.726Z Has data issue: false hasContentIssue false

A stochastic phase-field model determinedfrom molecular dynamics

Published online by Cambridge University Press:  17 March 2010

Erik von Schwerin
Affiliation:
Applied Mathematics and Computational Sciences, KAUST, Thuwal, Saudi Arabia.
Anders Szepessy
Affiliation:
Department of Mathematics, Royal Institute of Technology (KTH), Stockholm, Sweden. [email protected]
Get access

Abstract

The dynamics of dendritic growth of a crystal in an undercooled melt isdetermined by macroscopic diffusion-convection of heat and by capillary forcesacting on the nanometer scale of the solid-liquid interface width.Its modelling is useful for instance in processing techniques based on casting.The phase-field method is widely used to study evolution of such microstructural phase transformations ona continuum level; it couples the energy equation to a phenomenological Allen-Cahn/Ginzburg-Landauequation modelling the dynamics of an order parameter determining the solid and liquid phases,including also stochastic fluctuations to obtain the qualitatively correctresult of dendritic side branching.This work presents a method to determine stochastic phase-field models from atomisticformulations by coarse-graining molecular dynamics. It has three steps: (1) a precisequantitative atomistic definition of the phase-field variable, based on the localpotential energy;(2) derivation of its coarse-graineddynamics model, from microscopic Smoluchowski molecular dynamics (that is Brownian or over damped Langevin dynamics);and (3) numerical computation of the coarse-grained model functions. The coarse-grained model approximates Gibbs ensemble averages of the atomistic phase-field, bychoosing coarse-grained drift and diffusion functions that minimize the approximation error of observables in thisensemble average.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amberg, G., Semi sharp phase-field method for quantitative phase change simulations. Phys. Rev. Lett. 91 (2003) 265505265509. CrossRef
Asta, M., Beckermann, C., Karma, A., Kurz, W., Napolitano, R., Plapp, M., Purdy, G., Rappaz, M. and Trivedi, R., Solidification microstructures and solid-state parallels: Recent developments, future directions. Acta Mater. 57 (2009) 941971. CrossRef
Beale, J.T. and Majda, A.J., Vortex methods. I. Convergence in three dimensions. Math. Comp. 39 (1982) 127.
Boettinger, W.J., Warren, J.A., Beckermann, C. and Karma, A., Phase field simulation of solidification. Ann. Rev. Mater. Res. 32 (2002) 163194. CrossRef
Burman, E. and Rappaz, J., Existence of solutions to an anisotropic phase-field model. Math. Methods Appl. Sci. 26 (2003) 11371160. CrossRef
Cances, E., Legoll, F. and Stolz, G., Theoretical and numerical comparison of some sampling methods for molecular dynamics. ESAIM: M2AN 41 (2007) 351389. CrossRef
De Masi, A., Orlandi, E., Presutti, E. and Triolo, L., Glauber evolution with the Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics. Nonlinearity 7 (1994) 633696. CrossRef
Ren, W. E and W., Heterogeneous multiscale method for the modeling of complex fluids and micro-fluidics. J. Comput. Phys. 204 (2005) 126. CrossRef
D. Frenkel and B. Smit, Understanding Molecular Simulation. Academic Press (2002).
J. Gooodman, K.-S. Moon, A. Szepessy, R. Tempone and G. Zouraris, Stochastic Differential Equations: Models and Numerics. http://www.math.kth.se/~szepessy/sdepde.pdf.
Hardy, R.J., Formulas for determining local properties in molecular dynamics: shock waves. J. Chem. Phys. 76 (1982) 622628. CrossRef
Hoyt, J.J., Asta, M. and Karma, A., Atomistic and continuum modeling of dendritic solidification. Mat. Sci. Eng. R 41 (2003) 121163. CrossRef
Irving, J.H. and Kirkwood, J.G., The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18 (1950) 817829. CrossRef
L.P. Kadanoff, Statistical physics: statics, dynamics and renormalization. World Scientific (2000).
Karma, A. and Rappel, W.J., Phase-field model of dendritic side branching with thermal noise. Phys Rev. E 60 (1999) 36143625. CrossRef
Katsoulakis, M. and Szepessy, A., Stochastic hydrodynamical limits of particle systems. Comm. Math. Sciences 4 (2006) 513549. CrossRef
Kramer, P.R. and Majda, A.J., Stochastic mode reduction for particle-based simulation methods for complex microfluid systems. SIAM J. Appl. Math. 64 (2003) 401422.
H. Kroemer and C. Kittel, Thermal Physics. W.H. Freeman Company (1980).
L.D. Landau and E.M. Lifshitz, Statistical Physics Part 1. Pergamon Press (1980).
T.M. Liggett, Interacting particle systems. Springer-Verlag, Berlin (2005).
Mas-Gallic, S. and Raviart, P.-A., A particle method for first-order symmetric systems. Numer. Math. 51 (1987) 323352. CrossRef
G. Morandi, F. Napoli and E. Ercolessi, Statistical Mechanics: An Intermediate Course. World Scientific Publishing (2001).
E. Nelson, Dynamical Theories of Brownian Motion. Princeton University Press (1967).
Pavlik, S.G. and Sekerka, R.J., Forces due to fluctuations in the anisotropic phase-field model of solidification. Physica A 268 (1999) 283290. CrossRef
T. Schlick, Molecular modeling and simulation. Springer-Verlag (2002).
Soner, H.M., Convergence of the phase-field equations to the Mullins-Sekerka Problem with kinetic undercooling. Arch. Rat. Mech. Anal. 131 (1995) 139197. CrossRef
A. Szepessy, R. Tempone and G. Zouraris, Adaptive weak approximation of stochastic differential equations. Comm. Pure Appl. Math. 54 (2001) 1169–1214.
N.G. van Kampen, Stochastic Processes in Physics and Chemistry. North-Holland (1981).
E. von Schwerin, A Stochastic Phase-Field Model Computed From Coarse-Grained Molecular Dynamics. arXiv:0908.1367, included in [30].
E. von Schwerin, Adaptivity for Stochastic and Partial Differential Equations with Applications th Phase Transformations. Ph.D. Thesis, KTH, Royal Institute of Technology, Stockholm, Sweden (2007).