Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:14:59.378Z Has data issue: false hasContentIssue false

Stabilization methods in relaxed micromagnetism

Published online by Cambridge University Press:  15 September 2005

Stefan A. Funken
Affiliation:
Department of Numerical Analysis, University of Ulm, 89069 Ulm, Germany. [email protected]
Andreas Prohl
Affiliation:
Department of Mathematics, ETHZ, 8092 Zürich, Switzerland.
Get access

Abstract

The magnetization of a ferromagnetic sample solves anon-convex variational problem, where its relaxation by convexifyingthe energy density resolves relevantmacroscopic information. The numerical analysis of the relaxed modelhas to deal with a constrained convexbut degenerated, nonlocal energy functional in mixed formulation formagnetic potential u and magnetization m.In [C. Carstensen and A. Prohl, Numer. Math.90(2001) 65–99], the conforming P1 - (P0)d -element in d=2,3 spatialdimensions is shown to lead toan ill-posed discrete problem in relaxed micromagnetism, and suboptimalconvergence.This observation motivated anon-conforming finite element method which leads toa well-posed discrete problem, with solutions converging atoptimal rate.In this work, we provide both an a priori and a posteriori error analysis for twostabilized conforming methods which account for inter-element jumps of thepiecewise constant magnetization.Both methods converge at optimal rate;the new approach is applied to a macroscopic nonstationary ferromagnetic model [M. Kružík and A. Prohl, Adv. Math. Sci. Appl. 14 (2004) 665–681 – M. Kružík and T. Roubíček, Z. Angew. Math. Phys. 55 (2004) 159–182 ].

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberty, J., Carstensen, C. and Funken, S.A., Remarks around 50 lines of Matlab: finite element implementation. Numer. Algorithms 20 (1999) 117137. CrossRef
W.F. Brown, Micromagnetics. Interscience, New York (1963).
C. Carstensen and S. Funken, Adaptive coupling of penalised finite element methods and boundary element methods for relaxed micromagnetics. In preparation.
Carstensen, C. and Praetorius, D., Numerical analysis for a macroscopic model in micromagnetics. SIAM J. Numer. Anal. 42 (2005) 26332651, electronic. CrossRef
Carstensen, C. and Prohl, A., Numerical analysis of relaxed micromagnetics by penalized finite elements. Numer. Math. 90 (2001) 6599.
De Simone, A., Energy minimizers for large ferromagnetic bodies. Arch. Rational Mech. Anal. 125 (1993) 99143.
S.A. Funken and A. Prohl, On stabilized finite element methods in relaxed micromagnetism. Preprint 99-18, University of Kiel (1999).
A. Hubert and R. Schäfer, Magnetic Domains. Springer (1998).
Keast, P., Moderate-degree tetrahedral quadrature formulas. Comput. Methods Appl. Mech. Engrg. 55 (1986) 339348.
Kružík, M., Maximum principle based algorithm for hysteresis in micromagnetics. Adv. Math. Sci. Appl. 13 (2003) 461485.
Kružík, M. and Prohl, A., Young measure approximation in micromagnetics. Numer. Math. 90 (2001) 291307.
Kružík, M. and Prohl, A., Macroscopic modeling of magnetic hysteresis. Adv. Math. Sci. Appl. 14 (2004) 665681.
M. Kružík and A. Prohl, Recent developments in modeling, analysis and numerics of ferromagnetism. SIAM Rev. (accepted, 2005).
Kružík, M. and Roubíček, T., Microstructure evolution model in micromagnetics. Z. Angew. Math. Phys. 55 (2004) 159182.
Kružík, M. and Roubíček, T., Interactions between demagnetizing field and minor-loop development in bulk ferromagnets. J. Magn. Magn. Mater. 277 (2004) 192200. CrossRef
P. Pedregal, Parametrized Measures and Variational Principles. Birkhäuser (1997).
A. Prohl, Computational micromagnetism. Teubner (2001).
R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner (1996).